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Topic 1: Low-Density
Parity-Check Codes

1.1 Introduction

Low-density parity-check (LDPC) codes are forward error-atiiom codes,

first proposed in the 1962 PhD thesis of Gallager at MIT. At the time, their
incredible potential remained undiscovered due to the computational demands
of simulation in an era when vacumm tubes were only just being replaced by
the first transistors. They remained largely neglected for over 35.ybathe
mean time the field of forward error correction was dominated by highly struc-
tured algebraic block and convolutional codes. Despite the enormocticpta
success of these codes, their performance fell well short of theeteaity
achievable limits set down by Shannon in his seminal 1948 paper. By the late
1980s, despite decades of attempts, researchers were largely defsighés
seemingly insurmountable theory—practice gap.

The relative quiescence of the coding field was utterly transformed by the
introduction of “turbo codes,” proposed by Berrou, Glavieux and Thisinana
in 1993, wherein all the key ingredients of successful error cormrectazies
were replaced: turbo codes involve very little algebra, employ iterativigildis
uted algorithms, focus on average (rather than worst-case) perfoemand
rely on soft (or probabilistic) information extracted from the channel.r@gét,
the gap to the Shannon limit was all but eliminated, using decoders with man-
ageable complexity.

As researchers struggled through the 1990s to understand just wioy tur
codes worked as well as they did, two researchers, McKay and Néa; in
duced a new class of block codes designed to posses many of the Setilme
new turbo codes. It was soon recognized that these block codesnaxd a
rediscovery of the LDPC codes developed years earlier by Gallagkzed, the
algorithm used to decode turbo codes was subsequently shown to beia spe
case of the decoding algorithm for LDPC codes presented by Gallageasp
years before.

New generalizations of Gallager’'s LDPC codes by a number of research
including Luby, Mitzenmacher, Shokrollahi, Spielman, Richardson and Ur-
banke, produced new irregular LDPC codes which easily outperfoeneist
turbo codes, as well as offering certain practical advantages ancyaabdy
cleaner setup for theoretical results. Today, design techniques feClLdddes
exist which enable the construction of codes which approach the Siwanno
capacity to within hundredths of a decibel.

So rapid has progress been in this area that coding theory today is in many
ways unrecognizable from its state just a decade ago. In addition to ting stro
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theoretical interest in LDPC codes, such codes have already bepteddn
satellite-based digital video broadcasting and long-haul optical commumicatio
standards, are highly likely to be adopted in the IEEE wireless local atea ne
work standard, and are under consideration for the long-term evolftibird-
generation mobile telephony.

1.2 Error correction using parity-checks

Here we will only consider binary messages and so the transmitted messages
consist of strings of’'s and1’s. The essential idea of forward error control cod-

ing is to augment thesmessagdits with deliberately introduced redundancy

in the form of extracheckbits to produce @odewordfor the message. These
check bits are added in such a way that codewords are sufficiently ¢difstinc

one another that the transmitted message can be correctly inferred at the re
ceiver, even when some bits in the codeword are corrupted duringrissien

over the channel.

The simplest possible coding scheme is the single parity check code (SPC).
The SPC involves the addition of a single extra bit to the binary message, the
value of which depends on the bits in the message. In an even parity cede, th
additional bit added to each message ensures an even numbgirokevery
codeword.

Examplel.l
The7-bit ASCII string for the letteSis 1010011, and a parity bit is to be added
as the eighth bit. The string f@already has an even number of ones (namely
four) and so the value of the parity bitisand the codeword fdis 101001 10.

More formally, for the7-bit ASCII plus even parity code we define a code-
word ¢ to have the following structure:

c=lc1 ey c3eqc5cq 07 cs),
where eacla; is either0 or 1, and every codeword satisfies the constraint
c1Deca®@ec3®ca®es Deg®erDeg =0. (1.2)

Equation (1.1) is called parity-check equatiorin which the symbolp repre-
sents modul@ addition.

Examplel.2
A 7-bit ASCII letter is encoded with the single parity check code from Exam-
ple 1.1. The resulting codeword was sent though a noisy channel astfitige
y=[10010010]was received. To checkyf is a valid codeword we test
with (1.1).

NOYRPYs POy Py @yrGys=10000010 0600100 =1.

Since the sum is 1, the parity-check equation is not satisfiedyaisdnot a
valid codeword. We have detected that at least one error occurredydbe
transmission.
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While the inversion of a single bit due to channel noise can easily be de-
tected with a single parity check code, this code is not sufficiently powerful
indicate which bit, or indeed bits, were inverted. Moreover, since any evm-
ber of bit inversions produces a string satisfying the constraint (lattgqms of
even numbers of errors go undetected by this simple code. Detecting more tha
a single bit error calls for increased redundancy in the form of additjmardty
bits and more sophisticated codes contain multiple parity-check equations and
each codeword must satisfy every one of them.

Examplel.3
A code(C consists of all length six strings

c= [01 C2 C3 C4 C5 06]7
which satisfy all three parity-check equations:

c1®ca®ey =0
co®c3Pes =0 (1.2)
c1LPeco®e3s®eg=0

Codeword constraints are often written in matrix form and so the constraints
of (1.2) become

C1
110100 ©2 0
o11010[]|®|=]o0 (1.3)
111001 = 0
Cs
H | C6

The matrix H is called aparity-check matrix Each row of H corresponds
to a parity-check equation and each columnibicorresponds to a bit in the
codeword. Thus for a binary code with parity-check constraints and length
codewords the parity-check matrix is anx n binary matrix. In matrix form a
stringy = [¢1 ¢2 c3 ¢4 ¢5 cgl is a valid codeword for the code with parity-check
matrix H if and only if it satisfies the matrix equation

Hy" = 0. (1.4)

1.2.1 Encoding

To distinguish between the message bits and parity bits in the codeword in Ex-
ample 1.3 we re-write the code parity-check constraints so that eachlges so
for a different codeword bit.
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Examplel.4.
The code constraints from Example 1.3 can be re-written as

4 = Cc1Dco
cs = coadDcy (15)
cg = C1DcaBcs

The codeword bitg;, co, andcs contain the three bit message, ¢3, and
c3, While the codeword bits,, ¢c; andcg contain the three parity-check bits.
Written this way the codeword constraints show how to encode the message.

Examplel.5.

Using the constraints in (1.5) the message produces the parity-check bits
cy = 11=0,
cs = 160= 1,
6 = 19100=0,

and so the codeword for this messageis [1 1 00 1 0].

Again these constraints can be written in matrix form as follows:

1 00101
[010203040506]:[0102@,] 01011 1]/, (1.6)
001011

G

where the matrixz is called thegenerator matri>of the code. The message bits
are conventionally labeled hy = [u1, ug, - - - ug|, where the vectou holds the

k message bits. Thus the codewardcorresponding to the binary message
u = [ujugug) can be found using the matrix equation

c =ud. a.7)

For a binary code witlk message bits and lengthcodewords the generator
matrix, GG, is ak x n binary matrix. The ratid /n is called theate of the code.

A code withk message bits contai?§ codewords. These codewords are a
subset of the total possib® binary vectors of length.

Examplel.6.
Substituting each of th2® = 8 distinct messages ¢, c3 = 000,001, ...,111

into equation (1.7) yields the following set of codewords for the code from
Example 1.3:

[000000] [001011] [010111] [011100]

[100101] [101110] [110010] [111001] (1.8)

This code is calledsystematidbecause the first codeword bits contain the
message bits. For systematic codes the generator matrix contaiksxtte
identity, I, matrix as its firstt columns. (The identity matrix, is ak x k
square binary matrix with ‘1’ entries on the diagonal from the top left coime
the bottom right corner and ‘O’ entries everywhere else.)
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A generator matrix for a code with parity-check matfixcan be found by
performing Gauss-Jordan elimination &hto obtain it in the form

H = [Aa In—k]a (19)

whereA is an(n — k) x k binary matrix and,,_, is the identity matrix of order
n — k. The generator matrix is then

G = [I;,, AT). (1.10)

The row space of7 is orthogonal taH. Thus if G is the generator matrix for a
code with parity-check matriX then

GH™ = 0.

Before concluding this section we note that a block code can be described
by more than one set of parity-check constraints. A set of constraintgidcs v
for a code provided that equation (1.4) holds for all of the codewordhén
code. For low-density parity-check codes the choice of parity-chedkixms
particularly important.

Examplel.7.
The codeC in Example 1.3 can also be described by four parity-check equa-
tions:
c1@ca®es=0
coPDcgdes=0
c1bceaBe3®eg=0
c3BcyPecg=0

(1.11)

The extra constraint in Example 1.7 is the linear combination of the 1-st
and 3-rd parity-check equations in and so the new equation is saiditeehdy
dependenbn the existing parity-check equations. In general, a code can have
any number of parity-check constraints but only- k& of them will be linearly
independent, whereis the number of message bits in each codeword. In matrix
notationn — k is the rank ofH

n—k =rank(H), (1.12)

where rank(H) is the number of rows iff which are linearly dependent over
GF(Q2).

1.2.2 Error detection and correction

Suppose a codeword has been sent down a binary symmetric chadraian
or more of the codeword bits may have been flipped. The task, outline in this
section and the following, is to detect any flipped bits and, if possible, tecorr
them.

Firstly, we know that every codeword in the code must satisfy (1.4),and s
errors can be detected in any received word which does not satisgongion.
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Examplel.8.
The codeword = [1 0 1 1 1 0] from the code in Example 1.3 was sent through
a binary symmetric channel and the the string= [1 0 1 0 1 0] received.
Substitution into equation (1.4) gives

1
110100 (1) 1
Hyl' =101 1010 ol=101 (1.13)
111001 . 0
0

The result is nonzero and so the stripds not a codeword of this code. We
therefore conclude that bit flipping errors must have occurred daramgmis-
sion.

The vector
s=Hy’,

is called the syndrome gf. The syndrome indicates which parity-check con-
straints are not satisfied by

Examplel.9.
The result of Equation 1.13, in Example 1.8, (i.e. the syndrome) indicates that
the first parity-check equation ifi is not satisfied by. Since this parity-check
equation involves the 1-st, 2-nd and 4-th codeword bits we can conclatatth
least one of these three bits has been inverted by the channel.

Example 1.8 demonstrates the use of a block code to detect transmission
errors, but suppose that the channel was even noisier and threesbitflipped
to produce the string = [0 0 1 0 1 1]. Substitution into (1.4) tells us thgt
is a valid codeword and so we cannot detect the transmission errorsatreat h
occurred. In general, a block code can only detect a set of bitsdfribre errors
don’t change one codeword into another.

TheHamming distanceetween two codewords is defined as the number of
bit positions in which they differ. For example the codewdrds 1 0 0 1 1 0]
and[1 0 0 0 0 1 1 1] differ in two positions, the third and eight codeword
bits, so the Hamming distance between them is two. The measure of the ability
of a code to detect errors is th@nimum Hamming distanca justminimum
distanceof the code. The minimum distance of a codg;,, is defined as the
smallest Hamming distance between any pair of codewords in the code. For the
code in Example 1.3¢.in = 3, so the corruption of three or more bits in a
codeword can result in another valid codeword. A code with minimum distance
dmin, CanN always detegterrors whenever

t < duin. (1.14)

To go further and correct the bit flipping errors requires that the dkco
determine which codeword was most likely to have been sent. Based only on
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knowing the binary received string, the best decoder will choose the code-
word closest in Hamming distanceyo When there is more than one codeword
at the minimum distance fromthe decoder will randomly choose one of them.
This decoder is called thmaximum likelihoodML) decoder as it will always
chose the codeword which is most likely to have produged

Examplel.10
In Example 1.8 we detected that the received stging [1 0 1 0 1 0] was
not a codeword of the code in Example 1.3. By compagingith each of the
codewords in this code, (1.8), the ML decoder will choose [1 0111 0], as
the closest codeword as it is the only codeword Hamming distafrcen y .

The minimum distance of the code in Example 1.8,sso a single bit
flipped always results in a string closer to the codeword which was sent than
any other codeword and thus can always be corrected by the ML eleddolw-
ever, if two bits are flipped ity there may be a different codeword which is
closer toy than the one which was sent, in which case the decoder will choose
an incorrect codeword.

Examplel.11
The codeword: = [1 0 1 1 1 0] from the code in Example 1.3 was transmitted
through a channel which introduced two flipped bits producing the sgriag
[001010]. By comparison ofy with each of the codewords of this code,
(1.8), the ML decoder will choose = [0 0 1 0 1 1] as the closest decoder as
it is Hamming distance one from. In this case the ML decoder has actually
added errors rather than corrected them.

In general, for a code with minimum distandg;,, e bit flips can always
be corrected by choosing the closest codeword whenever

e < L(dmin - 1)/2J7 (115)

where|z | is the largest integer that is at mast

The smaller the code rate the smaller the subsgt difinary vectors which
are codewords and so the better the minimum distance that can be achieved
by a code with lengtlm. The importance of the code minimum distance in
determining its performance is reflected in the description of block codesby th
three parameters., k, dpi, ).

Error correction by directly comparing the received string to every other
codeword in the code, and choosing the closest, is called maximum likelihood
decoding because it is guaranteed to return the most likely codeword- How
ever, such an exhaustive search is feasible only wh&small. For codes
with thousands of message bits in a codeword it becomes far too computation-
ally expensive to directly compare the received string with every one df‘the
codewords in the code. Numerous ingenious solutions have been pdofmos
make this task less complex, including choosing algebraic codes and exploiting
their structure to speed up the decoding or, as for LDPC codes, deuisiogl-
ing methods which are not ML but which can perform very well with a much
reduced complexity.
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1.3 Low-density parity-check (LDPC) codes

As their name suggests, LDPC codes are block codes with parity-chedkesatr
that contain only a very small number of non-zero entries. Itis the spessef

H which guarantees both a decoding complexity which increases only linearly
with the code length and a minimum distance which also increases linearly with
the code length.

Aside from the requirement thaf be sparse, an LDPC code itself is no dif-
ferent to any other block code. Indeed existing block codes can loessfally
used with the LDPC iterative decoding algorithms if they can be represented b
a sparse parity-check matrix. Generally, however, finding a sparig-pheck
matrix for an existing code is not practical. Instead LDPC codes are azbinn
constructing a sparse parity-check matrix first and then determining aagene
matrix for the code afterwards.

The biggest difference between LDPC codes and classical blocls ¢ede
how they are decoded. Classical block codes are generally decatieiy
like decoding algorithms and so are usually short and designed algdlyraica
to make this task less complex. LDPC codes however are decoded iteratively
using a graphical representation of their parity-check matrix and seeargreed
with the properties off as a focus.

An LDPC code parity-check matrix is calléd.,w,)-regular if each code
bit is contained in a fixed numbei;., of parity checks and each parity-check
equation contains a fixed numbaer,, of code bits.

Examplel.12
A regular parity-check matrix for the code in Example 1.3 with= 2, w, = 3
and rank(H) = 3, which satisfies (1.4) is

0
(1.16)

Il
oSO = O
_ o O =
O = = O
_= =0 O

S O = =

1
0
1

For an irregular parity-check matrix we designate the fraction of columns
of weight: by v; and the fraction of rows of weiglitby h;. Collectively the set
v andh is called thedegree distributiorof the code.

Examplel.13
The parity-check matrix in Equation 1.3 is irregular with degree distribution
= 1/2, Vg = 1/3, V3 = 1/6, hg = 2/3 andh4 = 1/3.

A regular LDPC code will have,
m-wy, =N - We, (2.17)

ones in its parity-check matrix. Similarly, for an irregular code

m(Z hi-i) = n(z v - 7). (1.18)
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1.3.1 LDPC constructions

The construction of binary LDPC codes involves assigning a small nuniber o
the values in an all-zero matrix to leso that the rows and columns have the
required degree distribution.

The original LDPC codes presented by Gallager are regular and define
by a banded structure iff. The rows of Gallager’s parity-check matrices are
divided intow, sets withM /w. rows in each set. The first set of rows contains
w, consecutive ones ordered from left to right across the columns. ¢re. f
i < M/w,, thei-th row has non zero entries in thi@ — 1) K + 1)-th to i-th
columns). Every other set of rows is a randomly chosen column permutdtion o
this first set. Consequently every columnfdthas a ‘1’ entry once in every one
of thew, sets.

Examplel.14

A length 12 (3,4)-regular Gallager parity-check matrix is

1111 00 0000 0 07
0000111 100UO0O0
000O0O0OOOOTI1T1T171
101001000100
H=|010000110001
000110O0O01O0T1O0
10010010O0T1O00O0
010001010O0T10O0

L0001 010O0O0T1O0O0 1]

Another common construction for LDPC codes is a method proposed by
MacKay and Neal. In this method columns Hf are added one column at a
time from left to right. The weight of each column is chosen to obtain the
correct bit degree distribution and the location of the non-zero entriescin e
column chosen randomly from those rows which are not yet full. If atpenigt
there are rows with more positions unfilled then there are columns remaining to
be added, the row degree distributions fomwill not be exact. The process can
be started again or back tracked by a few columns, until the correctegreds
are obtained.

Examplel.15
A length 12 (3,4)-regular MacKay Neal parity-check matrix is
1 0000101010 07
1001 1000O0O0T1TO0
010010101000
001 001O0O0O0O0T11
H=|100100011O0001
01 0010O0O0T1O0T1O0
10010010O01O0O0
010001010100
L0011 00O0O01O0O0 1]
Introducing Low-Density Parity-Check Codes ACOoRN Spring School
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When adding thé1-th column, shown in bold, the unfilled rows were thed
4-th, 5-th, 6-th and9-th from which the2-nd, 4-th and6-th were chosen.

Another type of LDPC codes calledpeat-accumulate codésve weight-
2 columns in a step pattern for the lagtcolumns ofH. This structure makes
the repeat-accumulate codes systematic and allows them to be easily encoded.

Examplel.16
A length 12 rate-1/4 repeat-accumulate code is
1 0 01 000 O0O0O0O0 07
1001 100O0O0O0O0O
01 0011000O0O0TO0
001 001100O0O0TO0
H=|001000110000
01 000O0O0OT11O0O0TO0
10000O0O0OO0OT1TT1O00O0
01 000O0O0OO0OO0OT1TT1PO0
001 00O0O0O0O0O0T1TT1]

The first three columns dff correspond to the message bits. The first parity-bit
(the fourth column off) can be encoded a&$ = ¢1, the second ag = c4 ® ¢y

and the next ags = ¢5 ® co and so on. In this way each parity-bit can be
computed one at a time using only the message bits and the one previously
calculated parity-bit.

Since LDPC codes are often constructed pseudo-randomly we often talk
about the set (oensembleof all possible codes with certain parameters (for
example a certain degree distribution) rather than about a particular abfoice
parity-check matrix with those parameters.

LDPC codes are often represented in graphical form Bwarmer graph
The Tanner graph consists of two sets of verticesertices for the codeword
bits (calledbit node$, andm vertices for the parity-check equations (called
check nodgs An edge joins a bit node to a check node if that bit is included
in the corresponding parity-check equation and so the number of edgfes in
Tanner graph is equal to the number of ones in the parity-check matrix.

Examplel.17.
The Tanner graph of the parity-check matrix Example 1.12 is shown in Fig. 1.1
The bit vertices are represented by circular nodes and the checkegebyc
square nodes.

The Tanner graph is sometimes drawn vertically with the bit nodes on the
left and check nodes on the right with bit nodes sometimes referredledtas
nodesor variable nodesnd the check nodes Bght nodesor constraint nodes
For a systematic code the message bit nodes can be distinguished fromitthe pa
bit nodes by placing them on separate sides of the graph.
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check nodes

O

bit nodes

Figure 1.1: The Tanner graph representation of the parity-check matrix in
(1.16). A6-cycle is shown in bold.

bit nodes (message-bits)

bit nodes (parity-bits)

Figure 1.2: The Tanner graph representation of the parity-check matx-in
ample 1.16

Examplel.18
The Tanner graph of the parity-check matrix in Example 1.16 is shown in
Fig. 1.2. The message bit nodes are shown at the top of the graph and the
parity bit nodes at the bottom.

A cyclein a Tanner graph is a sequence of connected vertices which start
and end at the same vertex in the graph, and which contain other vertices no
more than once. The length of a cycle is the number of edges it contains, and
thegirth of a graph is the size of its smallest cycle.

Examplel.19
A cycle of size6 is shown in bold in Fig. 1.1.
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The Mackay Neal construction method for LDPC codes can be adapted to
avoid cycles of length 4, called 4-cycles, by checking each pair of caumn
H to see if they overlap in two places. The construction of 4-cycle freescode
using this method is given in Algorithm 1. Inputis the code lengthater, and
column and row degree distributiorsandh. The vector is a lengthn vector
which contains an entriyfor each column i of weighti and the vectop is
a lengthm vector which contains an entiyfor each row inH of weighti.

Algorithm 1 MacKay Neal LDPC Codes

1. procedure MN CONSTRUCTIONn,7,v,h) > Required length, rate and
degree distributions

2: H = all zeron(1 — r) x n matrix > Initialization
3 a=][]

4: for i =1 : max(v) do

5: for j=1:v; xndo

6: a = [a, i

7 end for

8: end for

o  B=]

10: for : =1 : max(h) do

11: for j=1:h; xmdo

12: B = [ﬁa Z]

13: end for

14: end for

15:

16: fori=1:ndo > Construction
17: ¢ = random subset of, of sizeq;

18: for j=1:q;do

19: H(Cj, Z) =1

20: end for

21: a=o—=C

22: end for

23:

24: repeat

25: fori=1:n—-1do > Remove 4-cycles
26: forj=i+1:ndo

27: if |[H(:,7)|JH(:,75)] > 1then

28: permute the entries in theth column

29: end if

30: end for

31 end for

32 until cycles removed
33: end procedure

Removing the 4-cycles does have the effect of disturbing the row ddigee
tribution. For long codeél will be very sparse and so 4-cycles very uncommon
and the effect on the row degrees will be negligible. However, fortsumtes
4-cycle free parity-check matrices can be constructed much more effigdiy

Introducing Low-Density Parity-Check Codes ACOoRN Spring School
Sarah Johnson 14 version 1.1



using algebraic methods, as we will see later.

Alternatively, the Mackay Neal construction method for LDPC codes can
be adapted to avoid 4-cycles, without disturbing the row degree distribityon
checking each column before it is added to see if it will cause a cycle with any
of the already chosen columns and rejecting it if it does.

Examplel.2Q
If a 4-cycle free code was required in Example 1.15 the fourth column would
have been discarded, and a new one chosen, because it causgsla with

the first column inH .

1.3.2 Encoding

Earlier we noted that a generator matrix for a code with parity-check métrix
can be found by performing Gauss-Jordan eliminatiorHoto obtain it in the
form

H= [A; [nfk]a

where Ais a(n — k) x k binary matrix andl,,_j, is the sizen — k identity
matrix. The generator matrix is then

G = [I, AT].
Here we will go into this process in more detail using an example.

Examplel.21
We wish to encode the length 10 rate-1/2 LDPC code

1101100100
01101110060
H=]10001000111
1100011010
001 0010101

First, we putH into row-echelon forn{i.e. so that in any two successive rows
that do not consist entirely of zeros, the leading 1 in the lower row odattreer
to the right than the leading 1 in the higher row).

The matrixH is put into this form by applying@lementary row operations
in GF(2), which are; interchanging two rows or adding one row to another
modulo 2. From linear algebra we know that by using only elementary row
operations the modified parity-check matrix will have the same codeword set
as the original, (as the new system of linear equations will have an unethang
solution set).

The 1-st and 2-nd columns df already have ones on the diagonal and
entries in these columns below the diagonal are removed by replacing the 4-th
row with the modulo-2 sum of the 1-st and 4-th rows. The 3-rd columH of
does not have a one on the diagonal but this can be obtained by swapping
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3-rd and 5-th rows. Finally, replacing the 5-th row with the modulo two sum of
the 5-th and 4-th rows givel,. in row-echelon form:

1101100100
0110111000
H=|0010010101
0001111110
0000111001

Next the parity-check matrix is put inteducedrow-echelon form (i.e. so that
any column that contains a leading one has zeros everywhere elsell-sthe
column is already correct and the entry in the 2-nd column above the diagona
is removed by replacing the 1-st row with the modulo-2 sum of the 1-st and 2-
nd rows. Similarly the entry in the 3-nd column above the diagonal is removed
by replacing the 2-nd row with the modulo-2 sum of the 2-nd and 3-rd rdws.
clear the 4-th column the 1-st row is replace with the modulo-2 sum of the 1-st
and 4-th rows. Finally, to clear the 5-th column involves adding the 5-th row to
the 1-st, 2-nd and 4-th rows givés., in reduced row-echelon form:

1000001110
0100010100
H,=]10010010101
0001 0O0O01T11
0000111001

Lastly, using column permutations we put the parity-check matrix into stan-
dard form (where the last columns ofH;, are them columns ofH,.. which
contain the leading ones):

0111010000
1010001000
Hy =1 010100100
001 1100O010
1100100001

In this final step column permutations have been used and so the codewords
of Hgy will be permuted versions of the codewords correspondingy t0A
solution is to keep track of the column permutation used to ctHatg which

in this case is

I=[6 78 9 10 1 2 3 4 5],

and apply the inverse permutation to ed¢l,; codeword before it is transmit-
ted.

Alternatively, if the channel is memoryless, and so the order of codeword
bits is unimportant, a far easier option is to apflyo the originalH to give a
parity-check matrix

1101100100
0110111000
H=10001000111
1100011010
0010010101
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with the same properties & but which shares the same codeword bit ordering
asHg,.

Finally, a generatof: for the code with parity-check matricés,;; and H’
is given by

1000001101
01 000100O0O0T1
G=|0010011110
0001010010
000O01O0O0T1T171

All of this processing can be done off-line and just the matriGesnd H’
provided to the encoder and decoder respectively. However, thbdck of
this approach is that, unlikd, the matrixG will most likely not be sparse and
so the matrix multiplication

c =uG,

at the encoder will have complexity in the ordersotf operations. As is
large for LDPC codes, from thousands to hundreds of thousandisoftioe
encoder can become prohibitively complex. Later we will see that strutture
parity-check matrices can be used to significantly lower this implementation
complexity, however for arbitrary parity-check matrices a good apréato
avoid constructing= at all and instead to encode using back substitution with
H as is demonstrated in the following.

(Almost) linear-time encoding for LDPC codes

Rather than finding a generator matrix 8, an LDPC code can be encoded
using the parity-check matrix directly by transforming it into upper triangular
form and using back substitution. The idea is to do as much of the transforma-
tion as possible using only row and column permutations so as to keep as much
of H as possible sparse.

Firstly, using only row and column permutations, the parity-check matrix is
put intoapproximate lower triangular form

A BT
Ht_{c D E}

where the matrixX” is a lower triangular matrix (that i§" has ones on the
diagonal from left to right and all entries above the diagonal zero)izd s
(m — g) x (m — g). If H is full rank the matrixB is sizem — g x g and
Ais sizem — g x k. Theg rows of H left in C, D, and E are called the
gapof the approximate representation and the smaltée lower the encoding
complexity for the LDPC code.

Examplel.22
We wish to encode the message= [1 1 0 0 1] with the same length 10
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rate-1/2 LDPC code from Example 1.21:

11011001
01101110
H=|{00 01 00 01
11000110
001 001O01

O = = OO

_ o = O O

Instead of puttingd into reduced row-echelon form we put it into approximate
lower triangular form using only row and column swaps. For ftiisve swap
the 2-nd and 3-rd rows and 6-th and 10-th columns to obtain:

1101 1[0 0|1 0 O
000101 0j1 10
H=|01101(0 1|0 0 1
11 000{0 1|0 11
001001 01 01

with a gap of two.

Once in upper triangular format, Gauss-Jordan elimination is applied toElear

which is equivalent to multiplying?; by

Imy O
—ET' I, |°

to give
= [ Iny O [A BT
H_[—ET_l Ig}Ht_[é D 0
where .
C=—-ET'A+C,
and )
D=-ET'B+D
Examplel.23
Continuing from Example 1.22 we have
100
T7'=111 0|,
0 0 1
and
1 0 0 00
01 00O
In—g 0}
=0 0100
_ —1 y
[ ET Iy 11110
1 0101
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to give

1101 1/00]1 00
000101 0[1 10
H=|0 110 1|0 1|0 0 1
011001 0[000
100101 1[0 00

When applying Gauss-Jordan elimination to clgasnly C andD are effected,
the rest of the parity-check matrix remains sparse.

Finally, to encode usingl the codeword: = [c1c2, ..., ] is divided into
three parts¢c = [u, p1, p2|, whereu = [uy,ug, ..., u] is thek-bit message,
P1 = [P1;,P1ss - - -, P1,), hOldS the firsy parity bits andpa = [p2,,p2,, - - -, 2,,_,]
holds the remaining parity bits.

The codeword = [u, p1, p2] must satisfy the parity-check equatioA " =
0 and so

Au+ Bp1 +Tp2 =0, (12.19)

and . )
Cu + Dpq + Op2 = 0. (1.20)

SinceE has been cleared, the parity bitsgn depend only on the message
bits, and so can be calculated independently of the parity bitginlf D is
invertible,p; can be found from (1.20):

p1 =D !Cu. (1.21)

If D is not invertible the columns off can be permuted until it is. By keeping
g as small as possible the added complexity burden of the matrix multiplication
in Equation 1.21, which i§)(g?), is kept low.

Oncep; is knownps can be found from (1.19):

p2 = —T"'(Au+ Bpy), (1.22)

where the sparseness 4f B andT can be employed to keep the complexity
of this operation low and, & is upper triangularp, can be found using back
substitution.

Examplel.24
Continuing from Example 1.23 we partition the length 10 codewsosd|c, ca, . . ., c10]
asc = [u, p1, p2] Wherepl = [cg, c7] andp2 = [cg, ¢9, c10]. The parity bits

in p1 are calculated from the message using Equation 1.21.:

1
1 0 01 100 L
- s B
p1=D C“‘[1 1“10010] : =[1 0]
1
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As T' is upper-triangular the bits ip2 can then be calculated using back sub-
stitution.

P2, = W QW PwPus=1010001=1
P2, UL Ppr, ODpr, =001P1=0
D23 U DuzBus ®p, =1000100=0

and the codewordie=[110011010 0].

Again column permutations were used to obtainfrom H and so either
H;, or H with the same column permutation applied, will be used at the decoder.
Note that since the parity-check matrix used to compiiten Example 1.21
is a column permuted version éf;, the set of codewords generated by both
encoders will not be the same.

1.4 Bibliographic notes

LDPC codes were first introduced by Gallager in his 1962 thesis [1].idn h
work, Gallager used a graphical representation of the bit and parykcets
of regular LDPC codes, to describe the application of iterative decodihg.
systematic study of codes on graphs however is largely due to Tanneiirwho
1981, formalized the use of bipartite graphs for describing families ofsf#]e

Irregular LDPC codes were first proposed by a group of reseesdh the
late 90’s [3, 4] and it is these codes which can produce performanitieis a
fraction of a decibel from capacity [5].

The encoding algorithm presented here is from [6] and the two pseudo-
random constructions we have considered can be found in [1] anBdv¥more
detail on classical block codes we like the error correction texts [8][2naf,
for those interested in a more mathematical treatment, [10] and [11].
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Topic 2: Message-Passing
Decoding

The class of decoding algorithms used to decode LDPC codes are celigctiv
termedmessage-passirggorithms since their operation can be explained by
the passing of messages along the edges of a Tanner graph. Eaeh Jiaph
node works in isolation, only having access to the information contained in the
messages on the edges connected to it. The message-passing algoritiets are
known asiterative decodinglgorithms as the messages pass back and forward
between the bit and check nodes iteratively until a result is achieved gor th
process halted). Different message-passing algorithms are namee fypth
of messages passed or for the type of operation performed at the nodes

In some algorithms, such as bit-flipping decoding, the messages are binary
and in others, such d=lief propagatiordecoding, the messages are probabil-
ities which represent a level of belief about the value of the codeword Ibits
is often convenient to represent probability values as log likelihood ratius,
when this is done belief propagation decoding is often called sum-proéuct d
coding since the use of log likelihood ratios allows the calculations at the bit
and check nodes to be computed using sum and product operations.

2.1 Message-passing on the binary erasure channel

On the binary erasure channel (BEC) a transmitted bit is either recetred c
rectly or completely erased with some probabiktySince the bits which are
received are always completely correct the task of the decoder is tordiete
the value of the unknown bits.

If there exists a parity-check equation which includes only one erased bit
the correct value for the erased bit can be determined by choosing Ithe va
which satisfies even parity.

Example2.1
The code in example 1.3 includes the parity-check equation

c1®co®eyg =0.

If the value of bitc; is known to be ‘0’ and the value of bt is known to be ‘1’,
then the value of bit, must be ‘1’ if¢q, ¢ andc, are part of a valid codeword
for this code.

In the message-passing decoder each check node determines thefivatue o
erased bit if it is the only erased bit in its parity-check equation.

21



The messages passed along the Tanner graph edges are straigbtferwa
bit node sends the same outgoing messafjéo each of its connected check
nodes. This message, labelef] for thei-th bit node, declares the value of the
bit ‘1’, ‘0" if it is known or * z’ if it is erased. If a check node receives only
one ‘z’ message, it can calculate the value of the unknown bit by choosing the
value which satisfies parity. The check nodes send back differenagesso
each of their connected bit nodes. This message, laligjedor the message
from thej-th check node to th&th bit node, declares the value of théit *1’,

‘0’ or ' " as determined by th¢-th check node. If the bit node of an erased bit
receives an incoming message which is ‘1’ or ‘0’ the bit node changealite v

to the value of the incoming message. This process is repeated until all of the
bit values are known, or until some maximum number of decoder iterations has
passed and the decoder gives up.

We use the notatio3; to represent the set of bits in thieth parity-check
equation of the code. So for the code in Example 1.12 we have

By = {1,2,4}, B, = {2,3,5}, By = {1,5,6}, By = {3,4,6}.

Similarly, we use the notatioA; to represent the parity-check equations which
check on the-th bit of the code. So for the code in Example 1.12 we have

Ay ={1,3}, Ay ={1,2}, A3 = {2,4}, A5 = {1,4}, A5 = {2,3}, Ag = {3,4}.

Algorithm 2 outlines message-passing decoding on the BEC. Input is the

received values from the detectgr= [y1, . .., y,] which can be ‘1’, ‘0’ or %',
and outputisM = [Mj, ..., M,] which can also take the values ‘1’, ‘0’ ar".
Example2.2

The LDPC code from Example 1.12 is used to encode the codeword
c=[001011].

c is sent though an erasure channel and the vector
y=[001zzz

is received. Message-passing decoding is used to recover thd bitase

Initialization isM; = r; so
M=[001zxz|.

For Step 1 the check node messages are calculated. The 1-st chedk nod
joined to the 1-st, 2-nd and 4-th bit nodes, and so has incoming messages ‘1
‘0’ and ‘z. Since the check node has one incomingmessage, from the 4-th
bit node, its outgoing message on this edgje,, will be the value of thel-th

codeword bit;
Evy = M &M

= 0®0
= 0.

The 2-nd check includes the 2-nd, 3-rd and 5-th bits, and so has incongsg
sages ‘0’, ‘1’ and x. Since the check node has one incomighessage, from
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Algorithm 2 Erasure Decoding
1: procedure DECODH(Yy)

2:

3: I1=0 > Initialization
4: fori=1:ndo

5: M; =y,

6: end for

7: repeat

8:

9 for j=1:mdo > Step 1. Check messages
10: for all i € B; do

11: if all messages into chegkother thanl/; are knownthen
12: E;;= Zz”ij,i';éi(Mi’ mod 2)

13: else

14: Ejﬂ' =2

15: end if

16: end for

17: end for

18:

19: fori=1:ndo > Step 2: Bit messages
20: if M; = ‘unknown’then

21: if there exists g € A; s.t. E;; # ‘2’ then

22: M,; = Ej,i

23: end if

24: end if

25: end for

26:

27: if all M; known orl = I, then > Test
28: Finished

29: else

30: I=I+1

31 end if

32: until Finished
33: end procedure

the 5-th bit node, its outgoing message on this edge,, will be the value of
the5-th codeword bit:
Eys = My® M3
= 01
= 1.

The 3-rd check includes the 1-st, 5-th and 6-th bits, and so has incoming mes
sages ‘0", " and ‘z’. Since this check node receives twd messages, it can-
not be used to determine the value of any of the bits. In this case the outgoing
messages from the check node areall Similarly, the 4-th check includes the
3-rd, 4-th and 6-th bits and so receives twod messages and thus also cannot
used to determine the value of any of the bits.

In Step 2 each bit node that has an unknown value uses its incoming mes-
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sages to update its value if possible. The 4-th bit is unknown and has incoming
message, of ‘0’ £/1 4) and ‘2’ (E44) and so it changes its value to ‘0’. The
5-th bit is also unknown and has an incoming messages offd5) and ‘=’

(E3,5) and so it changes its value to ‘1’. The 6-th bit is also unknown but it has
incoming messages of* (Es3¢) and ‘2’ (E£y6) SO it cannot change its value.

At the end of Step 2 we thus have

M=[00101az]

For the test, there is a remaining unknown bit (the 6-th bit) and so the algo-
rithm continues.

Repeating Step 1 the 3-rd check node is joined to the 1-st, 5-th and 6-th
bit nodes, and so this check node has one incomingnessageMs. The
outgoing message from this check to the 6-th bit nddgs, is the value of the

6-th codeword bit.
Esg = M ® Ms

= 160
= 1

The 4-th check node is joined to the 3-rd, 4-th and 6-th bit nodes, ane $bish
check node has one incoming’ ‘messageMg. The outgoing message from
this check to the 6-th bit nodé;, ¢, is the value of thé-th codeword bit.

Ezg = M3zD M,y
= 061
= 1.

In Step 2 the 6-th bit is unknown and has incoming messakjgs,and ¢
with value ‘1" and so it changes its value to ‘1’. Since the received bits1fro
the channel are always correct the messages from the check nibidas/ays
agree. (In the bit-flipping algorithm we will see a strategy for when this is not
the case.)
This time at the test there are no unknown codeword bits and so the algorithm
halts and returns

M=[001011]

as the decoded codeword. The received string has therefore teently de-
termined despite half of the codeword bits having been erased. Fig 2.5 show
graphically the messages passed in the message-passing decoder.

Since the received bits in an erasure channel are either correckmown
(no errors are introduced by the channel) the messages passedrbatwies
are always the correct bit values af. When the channel introduces errors into
the received word, as in the binary symmetric or AWGN channels, the messag
in message-passing decoding are instead the best guesses of therdadoiew
values based on the current information available to each node.
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Initialization

Figure 2.1:Message-passing decoding of the received stging [0 0 1 = z x]. Each sub-
figure indicates the decision made at each step of the decoding algorisen da the messages
from the previous step. For the messages, a dotted arrow corresjootie messages “bit 0"
while a solid arrow corresponds to “bit 1”7, and a light dashed arrow corresponds to “Bit
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2.2 Bit-flipping decoding

The bit-flipping algorithm is a hard-decision message-passing algorithm for
LDPC codes. A binary (hard) decision about each received bit is rbgde
the detector and this is passed to the decoder. For the bit-flipping algorithm
the messages passed along the Tanner graph edges are also birianoda b
sends a message declaring if it is a one or a zero, and each checkemaoide s

a message to each connected bit node, declaring what value the bitdsdmase
the information available to the check node. The check node determines that
its parity-check equation is satisfied if the mod@lsum of the incoming bit
values is zero. If the majority of the messages received by a bit nodéfare d

ent from its received value the bit node changes (flips) its currenevalhis
process is repeated until all of the parity-check equations are satisfiadiil
some maximum number of decoder iterations has passed and the deceder giv
up.

The bit-flipping decoder can be immediately terminated whenever a valid
codeword has been found by checking if all of the parity-check equatioe
satisfied. This is true of all message-passing decoding of LDPC coddsaan
two important benefits; firstly additional iterations are avoided once a solution
has been found, and secondly a failure to converge to a codewordag<al
detected.

The bit-flipping algorithm is based on the principal that a codeword bit in-
volved in a large number of incorrect check equations is likely to be incor-
rect itself. The sparseness &f helps spread out the bits into checks so that
parity-check equations are unlikely to contain the same set of codewordibits
Example 2.4 we will show the detrimental effect of overlapping parity-check
equations.

The bit-flipping algorithm is presented in Algorithm 3. Input is the hard de-
cision on the received vector,= [y, . . ., yn), and outputis\l = [M, ..., M,].

Example2.3.
The LDPC code from Example 1.12 is used to encode the codeword

c=[001011].

c is sent though a BSC channel with crossover probabilit: 0.2 and the
received signal is
y=[101011].

Initialization isM; = r; so
M=[101011].

For Step 1 the check node messages are calculated. The 1-st chedk nod
joined to the 1-st, 2-nd and 4-th bit nodds, = [1,2,4], and so the message
for the 1-st check is

Ein = Myd M,y
060
= 0,
Eio = M ® M,y

= 130
= 1,
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Algorithm 3 Bit-flipping Decoding

1: procedure DECODHyy)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

end for

repeat

I1=0 > Initialization
fori=1:ndo

M; = y;

for j=1:mdo > Step 1. Check messages

fori=1:ndo
Eji = Zi'ij,z";éi(Mi’ mod 2)
end for
end for

fori=1:ndo > Step 2: Bit messages
if the messageB; ; disagree withy; then
M; = (r; +1 mod 2)

end if
end for
for j=1:mdo > Test: are the parity-check
Lj =3 yep,(My mod 2) > equations satisfied
end for
if all L; = 0orI = I then
Finished
else
I=1+1
end if

until Finished

30: end procedure

Evy = M &M
160
= 1.

The 2-nd check includes the 2-nd, 3-rd and 5-th bits = [2, 3, 5], and so the
message for the 2-nd check is

Eyo = Ms® Ms
= 11

Ey3 = My® Ms
0p1
= 1,

E275 = Ms® Ms
01
= 1.
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Repeating for the remaining check nodes gives:

Es1 =0, E35=0, E36=0,
Ey3=1, E44=0, Eu6=1.

In Step 2 the 1-st bit has messages from the 1-st and 3-rd chégks, [1, 3]

both zero. Thus the majority of the messages into the 1-st bit node indicate a
value different from the received value and so the 1-st bit node flipgaltse.

The 2-nd bit has messages from the 1-st and 2-nd chebkss [1,2] which

are one and so agree with the received value. Thus the 2-nd bit dbégno

its value. Similarly, none of the remaining bit nodes have enough check to bit
messages differing from their received value and so they all also retiin th
current values. The new bit to check messages are thus

M=[001011].
For the test the parity-checks are calculated. For the first check node

Li = M @& Mo My
= 040460
= 0.

For the second check node

Ly = My® Ms® Ms
011l
= 0,

and similarly for the 3-rd and 4-th check nodes:

L3 = Oa
Ly = 0.

There are thus no unsatisfied checks and so the algorithm halts andreturn
M=[001011]

as the decoded codeword. The received string has therefore teently de-
coded without requiring an explicit search over all possible codeworde
decoding steps are shown graphically in Fig. 2.2.

The existence of cycles in the Tanner graph of a code reduces totweffe
ness of the iterative decoding process. To illustrate the detrimental effact
4-cycle we use a new LDPC code with Tanner graph shown in Fig. 2.3. Bor th
Tanner graph there is a 4-cycle between the first two bit nodes andsthiir
check nodes.

Example2.4.

A valid codeword for the code with Tanner graph in Fig. 2.3 is
c=[001001].
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Initialization

Check messages

Figure 2.2:Bit-flipping decoding of the received string= [1 0 1 0 1 1]. Each sub-figure

indicates the decision made at each step of the decoding algorithm batezimnessages from
the previous step. A crosx{ represents that the parity check is not satisfied while a tick (
indicates that it is satisfied. For the messages, a dashed arrow comledp the messages “bit
= 0" while a solid arrow corresponds to “bit 1”.

This codeword is sent through a binary input additive white Gaussiare nois
channel with binary phase shift keying (BPSK) signaling and

1115 —051 +1.8 —2]

is received. The detector makes a hard decision on each codewordlbi-a
turns
y=[101001]

As in Example 2.4 the effect of the channel has been that the first bit ig@uoto

The steps of the bit-flipping algorithm for this received string are shown in
Fig. 2.3. The initial bit values aré, 0,1,0,0, and1, respectively, and mes-
sages are sent to the check nodes indicating these values. Step 1 tlexeals
the 1-st and 2-nd parity-check equations are not satisfied and sotatthbe
algorithm continues. In Step 2 both the 1-st and 2-nd bits have the majority of
their messages indicating that the received value is incorrect and so ipoth fl
their bit values. When Step 1 is repeated we see that the 1-st and 2iyd par
check equations are again not satisfied. In further iterations the firsbita/o
continue to flip their values together such that one of them is always imtorre
and the algorithm fails to converge. As a result of theycle, each of the first
two codeword bits are involved in the same two parity-check equations, and
so when both of the parity-check equations are unsatisfied, it is nobpots
determine which bit is in error.
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Check messages

Initialization

Bit update

Figure 2.3:Bit-flipping decoding ofy = [1 0 1 0 0 1]. Each sub-figure indicates the decision
made at each step of the decoding algorithm based on the messagehdrpravious step. A
cross () represents that the parity check is not satisfied while a tickifidicates that it is
satisfied. For the messages, a dashed arrow corresponds to tlagesetst= 0" while a solid
arrow corresponds to “bit 1.
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2.3 Sum-product decoding

The sum-product algorithm is a soft decision message-passing algoritisn. |
similar to the bit-flipping algorithm described in the previous section, but with
the messages representing each decision (check met, or bit value efusaito
probabilities. Whereas bit-flipping decoding accepts an initial hard deaision
the received bits as input, the sum-product algorithm is a soft decisiontalgo
which accepts the probability of each received bit as input.

The input bit probabilities are called ttzepriori probabilities for the re-
ceived bits because they were known in advance before running tR€lda-
coder. The bit probabilities returned by the decoder are called fasteriori
probabilities. In the case of sum-product decoding these probabilitiesxare
pressed akg-likelihood ratios

For a binary variabler it is easy to findp(x = 1) givenp(x = 0), since
p(z = 1) = 1—p(x = 0) and so we only need to store one probability value for
x. Log likelihood ratios are used to represent the metrics for a binary Variab

by a single value:
L(x) = log (W) , (2.2)

where we uséog to meanlog,. If p(x = 0) > p(x = 1) thenL(z) is positive
and the greater the difference betwegm = 0) andp(x = 1), i.e. the more
sure we are that(xz) = 0, the larger the positive value fdr(z). Conversely,

if p(x = 1) > p(x = 0) thenL(x) is negative and the greater the difference
betweerp(x = 0) andp(xz = 1) the larger the negative value fé(z). Thus
the sign ofL(x) provides the hard decision anand the magnitudél.(x)| is

the reliability of this decision. To translate from log likelihood ratios back to
probabilities we note that

_ ple=1)/plx=0) _
T 1tpa=0/pz=0) 1tel@

p(z=1) (2.2)

and ( 0)/p( 1) L(z)
p(z = 0)/p(z = e
P e =0 =1 1+

The benefit of the logarithmic representation of probabilities is that whdyapro
bilities need to be multiplied log-likelihood ratios need only be added, reducing
implementation complexity.

The aim of sum-product decoding is to compute mieximum a posteriori
probability (MAP) for each codeword bitP; = P{¢; = 1|N}, which is the
probability that the-th codeword bit is d conditional on the evenV that all
parity-check constraints are satisfied. The extra information aboitdueived
from the parity-checks is callegktrinsicinformation for biti.

The sum-product algorithm iteratively computes an approximation of the
MAP value for each code bit. However, the a posteriori probabilities metlir
by the sum-product decoder are only exact MAP probabilities if the Tanne
graph is cycle free. Briefly, the extrinsic information obtained from a parity
check constraint in the first iteration is independent of the a priori fitiha
information for that bit (it does of course depend on the a priori prititiab of

(2.3)
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the other codeword bits). The extrinsic information provided ta bitsubse-
guent iterations remains independent of the original a priori probabilithifo

1 until the original a priori probability is returned back to bitia a cycle in the
Tanner graph. The correlation of the extrinsic information with the original a
priori bit probability is what prevents the resulting posteriori probabilitiesf
being exact.

In sum-product decoding the extrinsic message from check nadebit
nodei, F; ;, is the LLR of the probability that bit causes parity-checkto be
satisfied. The probability that the parity-check equation is satisfieddfide 1
is

ext __ _
P =

[T «a-z2p), (2.4)

i'€B; il #i

N | —
DO | =

wherePJi‘;F is the current estimate, available to cheggclof the probability that
bit i’ is a one. The probability that the parity-check equation is satisfied if bit
is a zerois thug — Pf¥'. Expressed as a log-likelihood ratio,

ext

E;; = LLR(J’J%?t)zlog(l;_eif ) (2.5)
J

and substituting (2.4) gives:

1 1 int
o 313 Hi’EBj,i/;éi(l_2Pi/ )
Bui = los <;—;nyesj,m<1—2pz,m> @6)
Using the relationship
1 1-—
tanh ( log <p>> =1-—2p,
2 p
gives
E B l 1+Hi’€B]~,z"¢i tanh(]\/[m-//Q)
i = 108 | 1T, B, iti b (M 1 /2) (2.7)
where .
- P
Mjv = LLR(F;y) = log | —5mi— | -
J
Alternatively, using the relationship
_ 1+p
2tanh™!(p) = log [ —=
anh™" (p) = log <1 _p) :
(2.7) can be equivalently written as:
(2.8)

E;; = 2tanh™! (Hi,eBﬂ-/#tanh(Mj’i//Q)).

Each bit has access to the input a priori LLR, and the LLRs from every
connected check node. The total LLR of thth bit is the sum of these LLRs:

Li =LLR(P™) =ri+ »  Ej.. (2.9)
JEA;
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However, the messages sent from the bit nodes to the check nalgesare
not the full LLR value for each bit. To avoid sending back to each checlken
information which it already has, the message fromittie bit node to thej-
th check node is the sum in (2.9) without the compongpnt which was just
received from thg-th check node:

Mj,i = Z Ej’,i + 7;. (2.10)
J'E€A:, §#]
The sum-product algorithm is shown in Algorithm 4. Input is the log likeli-
hood ratios for the a priori message probabilities

p(ct =0)

r; = lo ,
7 gp(ct — 1)

the parity-check matrix{ and the maximum number of allowed iterations,
I.ax. The algorithm outputs the estimated a posteriori bit probabilities of the
received bits as log likelihood ratios.

Example2.5.
Here we repeat Example 2.3 using sum-product instead of bit-flippingldego
The codeword

c=[001011],

is sent through a BSC with crossover probabitity- 0.2 and
y=[101011]

is received. Since the channel is binary symmetric the probabilityOthreds
sent if 1 is received is the probability;, that a crossover occurred while the
probability thatl was sent ifl is received is the probabilityi — p, that no
crossover occurred. Similarly, the probability thavas sent if0 is received is
the probability that a crossover occurred while the probability thabs sent

if 0 is received is the probability that no crossover occurred. Thus thoa pr
probabilities for the BSC are

_b_ i —
T, = { log 1-p’ if y; =1,

log 11);19, if y; =0.

For this channel we have

0.2
log 2 —log —% = ~1.3863,

1—-p 0.8
1- 0.8
log —— 2 — log - = 1.3863,

and so the a priori log likelihood ratios are
r = [—1.3863,1.3863, —1.3863, 1.3863, —1.3863, —1.3863].

To begin decoding we set the maximum number of iterations to three and pass
in H andr. Initialization is
Mjﬂ‘ =7T;.
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Algorithm 4 Sum-Product Decoding

1: procedure DECODHr)

2:
3: I1=0 > Initialization
4: fori=1:ndo
5: for j=1:mdo
6: Mj’i =7
7: end for
8: end for
9:
10: repeat
11: for j=1:mdo > Step 1. Check messages
12: for i € B; do
14+T1,7ep. 4+ tanh(M ;1 /2)

13: Ej; =log (1Hi,;j: : (i, /2))
14: end for
15: end for
16:
17: fori=1:ndo
18: L, = ZjEAi Ejﬂ' +7r;
19: z-:{l’ Li<0

' ! 0, L;>0.
20: end for
21: if I = Ihax O Hz! = 0 then
22: Finished
23: else
24: fori=1:ndo > Step 2: Bit messages
25: for j € A;do
26: Mji =3 pea;, jrzg By +ri
27: end for
28: end for
29: I=7T+1
30: end if

3L until Finished
32: end procedure

The 1-st bit is included in the 1-st and 3-rd checks and/&q and M3 ; are

initialized tor;:
Ml,l =ry =-1.3863 and M3,1 =r; = —1.3863.
Repeating for the remaining bits gives:

i=2: Mz =ry=1.3863 Mo =19 = 1.3863
1=3: M23 = T3 = —1.3863 M473 = T3 = —1.3863
1=4: M14:7’4 = 1.3863 M474 =Tq = 1.3863
1=29: MQ 5 =75 = —1.3863 M375 =75 = —1.3863
1=26: M3’6 =T = —1.3863 M476 =Te = —1.3863
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For Step 1 the extrinsic probabilities are calculated. Check one includes the
1-st, 2-nd and 4-th bits and so the extrinsic probability from the 1-st cteeck
the 1-st bit depends on the probabilities of the 2-nd and 4-th bits.

E1 1 = log

)

1+tanh(M1,2/2) tanh(M1,4/2)
1—tanh(M; 2/2) tanh(M7,4/2)
1+tanh(1.3863/2) tanh(1.3863/2)
1—tanh(1.3863/2) tanh(1.3863/2)

= log (1£88:86) = 0.7538.

= log

Similarly, the extrinsic probability from the 1-st check to the 2-nd bit depends
on the probabilities of the 1-st and 4-th bits

Ey2 = log

)

1+tanh(M;q1/2) tanh(My 4/2)
1—tanh(M1,1/2) tanh(M7 4/2)

1 1+tanh(—1.3863/2) tanh(1.3863/2)
= 108 { T—tanh(—1.3863/2) tanh(1.3863/2)

_ 1+—-0.6x0.6 | _

and the extrinsic probability from thest check to thei-th bit depends on the
LLRs sent from the -st and2-nd bits to thel-st check.

Eiy = log

)

1+tanh(M;,1/2) tanh(M; 2/2)
1—tanh(M171/2) tanh(Mlyg/Q)
1+tanh(—1.3863/2) tanh(1.3863/2)
1—tanh(—1.3863/2) tanh(1.3863/2) )

— log (120904 — —0.7538.

= log

Next, the 2-nd check includes the 2-nd, 3-rd and 5-th bits and so thes&trin
LLRs are:

Eys = log

)

1+tanh(M273/2) tanh(M275/2)
l—tanh(l\/[2,3/2) tanh(M2,5/2)
1+tanh(—1.3863/2) tanh(—1.3863/2)
1—tanh(—1.3863/2) tanh(—1.3863/2)
— log (12088t ) = 07588,
1+tanh(M2,2/2) tanh(M2,5/2)
1—tanh(M2,2/2) tanh(M2,5/2)

1 1+tanh(+1.3863/2) tanh(—1.3863/2)
= 108 { T—tanh(+1.3863/2) tanh(—1.3%63,/2)
= log (}5:=68) = —0.7538,
1+tanh(M2,2/2) tanh(M2’3/2)
1ftanh(M2,2/2) tanh(M2,3/2)
1+tanh(+1.3863/2) tanh(—1.3863/2)
1—tanh(+1.3863/2) tanh(—1.3863/2)

_ 1+0.6x—0.6 |\ _

= log

E273 = log

E275 = log

= log

Repeating for all checks gives the extrinsic LLRs:

0.7538 —0.7538 . —0.7538
0.7538 —0.7538 . —0.7538
0.7538 . . . 0.7538  0.7538
—0.7538  0.7538 . —0.7538

E:

To save space the extrinsic LLRs are given in matrix form wherg thg-th
entry of £ holds /5 ;. A*.” entry in E indicates that an LLR does not exist for
thati and;.
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To test the intrinsic and extrinsic probabilities for each bit are combined.
The 1-st bit has extrinsic LLRs from the 1-st and 3-rd checks andtansic
LLR from the channel. The total LLR for bit one is their sum:

Li=r1+FE1+ E31 = —1.3863+ 0.7538 + 0.7538 = 0.1213.

Thus even though the LLR from the channel is negative, indicating thdtithe
is a one, both of the extrinsic LLRs are positive indicating that the bit is zero.
The extrinsic LLRs are strong enough that the total LLR is positive andeso th
decision on bit one has effectively been changed. Repeating for bitotair
gives:

Ly = ro+ E1,2 + E272 = 1.3863

Ls r3+ Eo3 4+ Fy3 = —2.8938

Ly r4 + E1,4 + E474 = 1.3863

Ly = rs+ E2’5 + E375 = —1.3863

Le = 16+ E36+ Ey6 = —1.3863

The hard decision on the received bits is given by the sign of the LLRs,

z=[0 010 1 1].

To check ifz is a valid codeword

s=zH'=[0 0 1 0 1 1] =[0 0 0 0].

=0 O O =
— O R PRk OO

OO O K =
SO =R O = = O

Sinces is zeroz is a valid codeword, and the decoding stops, returniag the
decoded word.

Example2.6.
Using the LDPC code from Example 1.12, the codeword

c=[001011]

is sent though a BPSK AWGN channel wilfy /Ny = 1.25 (or 0.9691dB) and
the received signal is

y=[-0.1 05 —0.8 1.0 —0.7 0.5].

(If a hard decision is made without decoding, there are two bits in error in this
received vector, the 1-st and 6-th bits.) For an AWGN channel the & pLiBs
are given by

Es
i = 4%?0
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and so we have
r=[-05 25 —4.0 50 —3.5 2.5]

as input to the sum-product decoder.

Iteration 1

r = [-05 25 —40 50 -35 25|
2.4217 —0.4930 . —0.4217
E B 3.0265 —2.1892 . —2.3001
N —2.1892 . . . —0.4217  0.4696
2.4217 —2.3001 . —3.6869
L = [ —0.2676 50334 —3.7676 22783 —6.2217 —0.7173 |
z = [101011]
Hz" = [1010]" = Continue
[ —2.6892  5.5265 : 2.6999 . i
M _ 2.0070 —1.5783 —-3.9217
N 1.9217 . - —b.8001 —1.1869
i . —6.1892  4.5783 . 2.9696 |
Iteration 2
2.6426 —2.0060 . —2.6326 . i
B B 1.4907 —1.8721 . —1.1041
N 1.1779 . . —0.8388 —1.9016
i 2.7877 —2.9305 - —4.3963 |
L = [ 3.3206 1.9848 —3.0845 —0.5630 —5.4429 —3.7979]
z = [001111]
Hz" = [1001]" = Continue
0.6779  3.9907 . 2.0695 .
M B 0.4940 —1.2123 . —4.3388
2.1426 . . —4.6041 —1.8963
—5.8721  2.3674 : 0.5984
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Iteration 3

1.9352  0.5180 . 0.6515
B _ . 1.1733 —0.4808 . —0.2637
N 1.8332 . —1.3362 —2.0620
. 0.4912 —0.5948 . —2.3381
L = [ 3.2684  4.1912 —-3.9896  5.0567 —5.0999 —1.9001 ]
z = [001011]
Hz" = [0000]" = Terminate

The sum-product decoder converges to the correct codewordtlafter itera-
tions.

The sum-product algorithm can be modified to reduce the implementation
complexity of the decoder. This can be done by altering equation 2.8

E;; = 2tanh™! (Hi,eBﬂ/#tanh(Mj7Z-//2)) ,

S0 as to replace the product term by a sum. For simplicity we will write
i i'€By i #i

in the remainder of this section.
Firstly M; ; can be factored as

M; i = B
where
OZJ i = SlgH(M] i’)7 2
’ ' A1
/Bj,i’ = ‘Mj,i' ‘ . ( )

Using this notation we have that
H tanh(MN//Q) = H Oéjﬂ'/ H tanh(ﬁ]ﬂ//Z)
i i i

Then equation 2.8 becomes

Ej,z‘ = 2 tanhfl (Hz’ aj’ill_[i/ tanh(ﬁj’i//2)) (212)
= (HZ, ozjyi/) 2 tanh (HZ, tanh(ﬁj,i//2))

Equation 2.12 can now be re-arranged to replace the product by a sum:

E;; = ([Iyaj~)2tanh ' log ' log ([T, tanh(3;/2)) (2.13)
= ([ aj)2tanh~ log™" (3=, log tanh(B;/2)) . '
Next, we define
e’ +1
e? —1

o(x) = — logtanh(g) = log
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and note that since

d(¢(x)) = log @ — 1 L.

we havep—! = ¢. Finally equation 2.13 becomes

Eji = <H aj,z'f) ¢ (Z ¢(ﬁj,z")> : (2.14)

The product of the signs can be calculated by using modulo 2 addition of the
hard decisions on each/; ; while the functiong can be easily implemented
using a lookup table.

Alternatively, themin-sumalgorithm, simplifies the calculation of (2.7) by
recognizing that the term corresponding to the smalldst; dominates the
product term and so the product can be approximated by a minimum:

E;; ~ <H81gn .t >M1n‘

i

Again, the product of the signs can be calculated by using modulo 2 addition o
the hard decisions on eadl; ; and so the resulting min-sum algorithm thus
requires calculation of only minimums and additions.

2.4 Bibliographic notes

Message-passing decoding algorithms for LDPC codes were first iteddoy
Gallager in his 1962 thesis [1]. In the early 1960s, however, limited computing
resources prevented Gallager from demonstrating the capabilities ofgeessa
passing decoders for blocklengths longer than ardiddits, and for oveB0
years his work was ignored by all but a handful of researchersvast only
re-discovered by several researchers [7] in the wake of turbodieg [12],
which itself has subsequently been recognized as an instance of thesduttp
algorithm.

Introducing Low-Density Parity-Check Codes ACOoRN Spring School
Sarah Johnson 39 version 1.1






Topic 3: Density Evolution

The subject of this topic is to analyze the performance of message-padssing
coders and understand how the choice of LDPC code will impact on this per
formance. Ideally, for a given Tanner graphwve would like to know for which
channel noise levels the message-passing decoder will be able tot¢beec
errors and for which it won't. Unfortunately, this is still an open problent, b
what is possible to determine is how ansemblef Tanner graphs is likely to
behave, if the channel is memoryless and under the assumption that the Tan-
ner graphs are all cycle free. To do this the evolution of probability density
functions are tracked through the message-passing algorithm, a poatlesis
density-evolution

Density evolution can be used to find the maximum level of channel noise
which is likely to be corrected by a particular ensemble using the message-
passing algorithm, called thkresholdfor that ensemble. This then enables the
code designer to search for the ensemble with the best threshold fromn tehic
choose a specific LDPC code.

3.1 Density evolution on the BEC

Recall from Algorithm 2 that for message passing decoding on the BEC a

parity-check equation can correct an erased bit if that bit was the cageeé bit

in the parity-check equation. Here we make the assumption that the decoding
algorithm is passing messages down through the layers of a Tannewgnagth

is a tree. In this case the bit-to-check message to check node in a lower level
of the graph is determined by the check-to-bit messages from all the incoming
edges in the level above.

3.1.1 Regular LDPC codes

Given an ensembl€ (w,, w,), which consists of all regular LDPC Tanner
graphs with bit nodes of degree. and check nodes of degreg., we want
to know how the message-passing decoder will perform on the binasyrera
channel using codes from this ensembile.

For message-passing decoding on the BEC, the messages hold either the
current value of the bit, which can be ‘1'or ‘O’ if known og* if the bit value
is not known. We defing; to be the probability that at iteratidra check to bit
message is anc' and p; to be the probability that at iteratidna bit to check
message is an:' (i.e. p; is the probability that a codeword bit is still erased at
iteration!).

The check to bit message on an edgexsif one or more of the incom-
ing messages on the other,(— 1) edges into that check node is ari.’ To
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calculate the probabilityy;, that a check to bit message is at iteration! we
make the assumption that all of the incoming messages are independent of one
another. That is, we are assuming firstly that the channel is memoryldbsitso
none of the original bit probabilities were correlated, and secondly tlea¢ th
are no cycles in the Tanner graphs of lengftlor less, as a cycle will cause the
messages to become correlated. With this assumption, the probability that none
of the otherw, — 1 incoming message to the check nodexisis simply the
product of the probabilities1(— p;), that each individual message is net ‘So
the probability that one or more of the other incoming messagesai®one
minus this:

g=1-1-p)" (3.1)

At iteration ! the bit to check message will be’'if the original message
from the channel was an erasure, which occurs with probabiléynd all of the
incoming messages at iteratior- 1 are erasures, which each have probability
q;- Again we make the assumption that all of the incoming messages are inde-
pendent of one another, and so the probability that the bit to check nedssag
‘" is the product of the probabilities that the other — 1 incoming messages
to the bit node, and the original message from the channel, were erased.

p=c(g_y) ™Y, (3.2)

Substituting forg;_; from (3.1) gives

W — (we—1)
p=¢ (1 (1= ) 1>) . (3.3)

Prior to decoding the value qgf; is the probability that the channel erased a
codeword bit:

Po=¢.
Thus for a(w,, w,)-regular ensemble

11\ (e D)
po=¢, p=¢ (1 — (1 —py)r 1)) (3.4)

The recursion in (3.4) describes how the erasure probability of message
passing decoding evolves as a function of the iteration numfwer(w., w, )-
regular LDPC codes. Applying this recursion we can determine for whigh e
sure probabilities the message-passing decoder is likely to correct theesa

Example3.1
A code from the (3,6)-regular ensemble is to be transmitted on a binaryrerasu
channel with erasure probability= 0.3 and decoded with the message-passing
algorithm. The probability that a codeword bit will remain erased dfttar-
ations of message-passing decoding (if the code Tanner graph is e)ad
given by the recursion:

2
po=03, p=po (1 - (1 —pzf1)5> -

Applying this recursion for 7 iterations gives the sequence of bit eegzaba-
bilities,

po = 0.3000, p; =0.2076, p2=0.1419, p3 = 0.0858,
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Figure 3.1: The erasure probabilities calculated in Example 3.2.

ps=0.0392, ps=0.0098, pg=0.0007, py=0.0000.

Thus the erasure probability in a codeword from a 4-cycle free (&g)tar
LDPC code transmitted on a BEC with erasure probabilig/will approach
zero after seven iterations of message-passing decoding.

Example3.2
Extending Example 3.1 we would like to know which erasure probabilities the
codes from a (3,6)-regular ensemble are likely to be able to correct. Apply
ing the recursion (3.3) to a range of channel erasure probabilities eyarse
Fig. 3.1, that for values of > 0.43 the probability of remaining erasures does
not decrease to zero evenlagets very large, whereas, for valuesso£ 0.42

the probability of error does approach zerd as oo. The transition value of

e, between these two outcomes is the calledttiesholdof the (3,6)-regular
ensemble, a term we make more precise in the following. Again applying the
recursion (3.3), Fig. 3.2 demonstrates that the threshold for a (3,6)aresn-
semble on the binary erasure channel is between 0.4293 and 0.4294.

3.1.2 Irregular LDPC codes

Recall that an irregular parity-check matrix has columns and rows withngary
weights (respectively bit nodes and check nodes with varying dégréte
designated the fraction of columns of weighty v; and the fraction of rows of
weighti by h;.
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Figure 3.2: The erasure probabilities calculated in Example 3.2.

To derive density evolution for irregular LDPC codes an alternative-cha
acterization of the degree distribution, from the perspective of Tanragrhg
edges, is used. The fraction of edges which are connected to ddgjtewdes
is denoted\;, and the fraction of edges which are connected to degobeck
nodes, is denoteg}. By definition:

da=1 (3.5)
and
Z pi = 1. (3.6)
The functions
Mz) = dox + A3x? + -+ Nzt L+ (3.7)
p(x) = pax + psa® + -+ pix' 4 (3.8)

are defined to describe the degree distributions. Translating betweerdeed
grees and edge degrees:

o N

LN

h— P
Zj pilJ

From (3.1) we know that, at theth iteration of message-passing decoding,
the probability that a check to bit messageuais if all the incoming messages
are independent, is

g=1-1-p) Y,
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for an edge connected to a degtgecheck node. For an irregular Tanner graph
the probability that an edge is connected to a degreeheck node i, .
Thus averaging over all the edges in an irregular Tanner graphtheeserage
probability that a check to bit message is in error:

Q= sz‘ (1 —(1 —pl)(i_1)> —1_ Zpi (1— )

Using the definition op(z) in (3.8), this becomes

a=1-p(1—p).

From (3.2) we know that the probability that a bit to check messaga,is *
at thel-th iteration of message-passing decoding if all incoming messages are

independent, is

p=c(g )Y

for an edge is connected to a degteebit node. For an irregular Tanner graph
the probability that an edge is connected to a degrebit node is\,,.. Thus
averaging over all the edges in the Tanner graph gives the averalgabity
that a bit to check message is in error:

p=ed Nila-1)"".

Using the definition of\(x) in (3.7), this is equivalent to
p =X (q-1)-
Finally, substituting fok;_; we have
m=eX(1—p(l—p-1)).

Prior to decoding the value qgf; is the probability that the channel erased a
codeword bit:

Po=¢,
and so for irregular LDPC codes we have the recursion:
po=¢, p=pA(l—p(1l—p-1)). (3.9)

3.1.3 Threshold

The aim of density evolution is to determine for which channel erasure prob
abilities, ¢, the message-passing decoder is likely to correct all of the erased
bits. Using (3.9) we have a means of approximating this as an averagellover a
LDPC Tanner graphs with a given degree distributiop, by assuming that the
graphs are cycle free.

To examine the influence efonp; we define the function

f(p,e) =eA(1—p(1—p)).

The erasure probability at iteratidns then

() = f(pi-1,¢)
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Figure 3.3: The erasure probabilities calculated in Example 3.3.

wherep ande are probabilities, and so can take values betweand1. Here,
f(p,e) is a strictly increasing function ip for £ > 0. Thus ifp; > p;—; then

P = f(o,€) > f(pi—1,€) = i,

fore € [0, 1], sop;(e) is a monotone sequence which is lower bounded-at)
by
f0,e) =eA(1—p(1)) =eA(1-1)=0

and upper bounded at= 1 by
fe)=ed(1—p(1—=1))=eA(1-0) =¢.
Sincef(p, ) is a strictly increasing function ip
0< f(p,e) <e,

forall p € [0,1] ande € [0, 1]. Thusp; converges to an elemept, € [0, <].
Further, for a degree distribution paiX, p), and are € [0, 1], it can be proven
that if p;(¢) — 0 thenp;(¢') — 0 for all e < &. Indeed, there is a valug
called thethresholdsuch that for values of belowe*, p; approaches zero as
the number of iterations goes to infinity while for values of @bove:z* it does
not. The thresholds*, for (), p) is defined as the supremum ©ffor which
pi(e) — 0:

e"(A\,p) =sup{e € [07 1] :p1(€)i—o0 — 0}

Example3.3.
We wish to find the threshold of an irregular LDPC ensemble with degree dis-
tributions

M) = 0.1z + 0.42% + 0.5z
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Figure 3.4: The erasure probabilities calculated in Example 3.3.

and
p(x) = 0.527 + 0.52°.
This code has rate .
1— 2 il ~
>oipili
To find the threshold we apply the recursion from (3.9) over a wide rahge
different channel erasure probabilities. We see in Fig. 3.3, that faesafe
0.5 and above the probability of remaining erasures does not decrezsmto
even ag gets very large, whereas, for valuesaf 0.4 and below the probabil-
ity of error does go to zero. To close in on the threshold further we thply ap
the recursions to channel erasure probabilities between these valge8.4F
shows that for values af > 0.475 the probability of remaining erasures does
not decrease to zero evenlagets very large, whereas, for valuesso& 0.45
the probability of error does go to zero. To close in on the threshold ewen f
ther we now apply the recursions to channel erasure probabilities bretivese
values. Fig. 3.5, shows that for valuessof 0.475 the probability of remain-
ing erasures does not decrease to zero evérgass very large, whereas, for
values ofs < 0.465 the probability of error does go to zero. Roe= 0.47 we
would need to consider a larger number of decoder iterations to determiee if th
decoder would converge to zero. We can conclude, however, thttrdshold
for this ensemble is an erasure probability between 0.465 and 0.475.

0.5.

3.1.4 Stability

The recursion in (3.9) quickly results in very high order polynomials as the
iteration number is increased. However, to understand its behavior wyhen
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Figure 3.5: The erasure probabilities calculated in Example 3.3.

small we can approximate it by a Taylor series expansion of the right hded s
around 0. i.e.

pi=f(pi-1.€) = f'(p.e)pi-1- (3.10)
A function f(z) = g(h(x)) has a derivative with respect fogiven by
df _ dgdh
de  dhdx’

Thus for
F(p.€) = eX(h(p)) where h(p) =1 p(1—p)
the derivative with respect {ois

df (p,e) _ dAdh
dp  dhdp’

Evaluating this derivative at = 0 we have that

h(p=0)=1-p(1)=0

and so
dA dA :
- = = :)\2_|_2)\3h_|_...+(¢_1))\ih(l—2)+... = \g,
dhl,—o dhlp_g h=
and dh d(1 1
dh|  _ d(1—p(l—p)) _ ().
dp|)—o dp (1-p)=1
Substituting back into (3.10),
e edap (V)pr-1, (3.11)
Introducing Low-Density Parity-Check Codes ACOoRN Spring School
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asp; — 0.
For p; to converge to zero as — oo, requiresp; < p;—1, and so, from
(3.112), requires:
exop' (1) < 1. (3.12)

Thus for a degree distribution paik,p) to converge to zero on a binary erasure
channel with erasure probability \s is upper bounded by

1
ep/(1)
Equation 3.13 is often called tratability constraintof density evolution.

Ao < (3.13)

3.2 Density evolution on general memoryless channels

For message-passing decoding on general memoryless channelstdlohbik
messages are the log likelihood ratios (LLRs) of the probabilities that a given
bit is ‘1’ or ‘0’. As these LLR values are continuous, the probability that a
message is a particular LLR value is described by a probability density fanctio

(pdf).
Recall that the LLR of a random variablas
Mw=®>
Lz)=log | —= |,
(@) g(MwZU

and soL(x) will be positive if p(x = 0) > p(x = 1) and negative otherwise.
Consequently the probability that the corresponding codeword bit isia thé
probability that the LLR is negative.

Example3.4.
Fig. 3.6 shows a gaussian pdf fpfr). The probability that the bit is a ‘1’ is
given by the shaded area under the curve.

To analyze the evolution of these pdfs in the message-passing decoder we
definep(M;) to be the probability density function for a bit to check message
at iteration/ andp(E;) to be the probability density function for a check to bit
messages at iteratidnandp(r) to be the probability density function for the
LLR of the received signal.

Again we make the assumption that all of the incoming messages are in-
dependent of one another. That is, we are assuming firstly that theelhan
memoryless, so that none of the original bit probabilities were correlated, a
secondly that there are no cycles in the Tanner graphs of |@igthless, as a
cycle will cause the messages to become correlated.

The outgoing message at a bit node is the sum of the incoming LLRs on the
other edges into that node (2.10):

Mjﬂ' = E Ej/J' + 7.
J'€A:, J'#]

Since the incoming messages are independent, the pdf of the randonevariab
formed from this summation can be obtained by the convolution [13, egn 6.39]

Introducing Low-Density Parity-Check Codes ACOoRN Spring School
Sarah Johnson 49 version 1.1



0.04

0.035 B
0.03 Initial message b
0.025}- E /N =1.12dB g
b 0
2
2 002f B
3
o
0.015 B
0.01+ B
0.005 -
-50 -40 -30 -20 -10 0 10 20 30 40 50

LLR

Figure 3.6: The probability density function for additive white Gaussianenois
See Example 3.4.

of the pdfs of thev. — 1 incoming messages from the check nodes and the pdf
of the incoming message from the channel:

par = p(r) @ p(B) 2.
Averaging over the bit degree distributiox(z):

p(M) =p(r)® Z Aip(E)®0Y = p(r) @ AP (p(EY)).

The convolution operation can be evaluated numerically using FFTs.
The function to be evaluated at each check node is (2.7):

B —1o L+ [Tiep, i tanh (M /2)
e e

where
e’ —1

er +1°
Thus to sum over two messagesndy requires the calculation of the proba-
bility density function of

tanh(z/2) = log

_ 1+tanh(z/2) tanh(y/2) _ (e4+1)(eY+1)+(e*—1)(e¥—1)
flzy) = log i n@m) tanhtyr2) = 108 (ew+1)Eey+1)—ge1'—1§(ey—1)

— e’ +e¥

= —log iTerty

(3.14)
A method to find the pdf of a function of two random variables is given in
[13, egn 6.36]. Briefly, given two random variablesandy and the function
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Figure 3.7: The evolution of probability density functions with iteration num-
ber in density evolution. See Example 3.5.

z = f(x,y) the density ok can be found as follows:

fera= [ [ |, J@ sy

whereD, is the region of thecy plane such that < g(z,y) < 2z + d=.

To apply density evolution on general channels it is assumed that the origi-
nal codeword was all zeros. Consequently the probability that the bit rsan e
is the probability that the LLR is negative.

Example3.5.
Fig. 3.7 shows the evolution qf E;) for a (3,6)-regular ensemble on an AWGN
channel with signal-to-noise ratid’/Ny) of 1.12. On an AWGN channel the

pdf of the original received signal will be Gaussian with variaag¢eeflecting

the pdf of the noise. As the iteration number is increased the area under the
curve for negative LLRs decreases and so the probability of erreciedsing.

Although the pdfs start as gaussian, the result of the convolution o$gaus
pdfs is not gaussian except in the limit. However an approximation for den-
sity evolution on the AWGN channel assumes that the pdfs do in fact remain
gaussian. Since a Gaussian pdf is completely described by its mean and vari-
ance this approximation greatly simplifies the application of density evolution
as only the mean and variance are tracked through the message-passidg d
ing and not the entire pdf.

It can be shown (we don’t do it here see reference [14]) that tre@aduct
decoding algorithm preserves the order implied by degradation of thexehan
i.e. as the channel improves the performance of the sum-product degitide
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Figure 3.8: Calculating the threshold of a (3,6)-regular ensemble on anMWG
channel. Example 3.6.

also improve. For example, on a AWGN channel with variamder all o/ <
o the expected bit error probability of sum-product decodiRgp, satisfies
PSP(O'/) < PSP(O').

The threshold of a given degree distribution for sum-product decading
again the supremum of the channel noise values for which the probability of
decoding error goes to zero as the iteration number is allowed to go to infinity.
For an AWGN channel with varianeethe threshold is denoted:

o* =sup{o : Psp(0)i—oc — 0}

Example3.6.
We would like to know at which AWGN signal-to-noise ratios the codes from
a (3,6)-regular ensemble are likely to be able to correct the noise. Applying
density evolution for different channel erasure probabilities we sd€igir3.8,

that the threshold is af;, /Ny between 1.04 and 1.12.

3.3 Choosing the degree distribution

We have seen that the threshold of an ensemble of codes with a giver dikgr
tribution can be found using density evolution. The question for code mesig
is then which degree distributions will produce the best threshold.

Generally, the more irregular the bit degree distribution the better. The ca-
pacity approaching LDPC codes are both very long and very irregdiae
famous LDPC ensemble with threshold 0.0045 dB from the Shannon limit has
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a codeword length of0” bits with node degrees varying from 2 to 8000. The
subset of the bits nodes with very high degree will very quickly convénge
their solution, and once correct will pass high LLR values to their many con-
nected nodes. Since the overall densityfoheeds to be low, a large proportion

of degree-2 bit nodes are also required to reduce the average egaedThus

a degree distribution with a good threshold will contain a few very high @egre
bit nodes, many degree two nodes, but no more than allowed for by stability,
and some nodes with degrees in between these. Irregularity in the cheéek no
degrees is not as essential and generally one or two check dednessndo
achieve the required average row weight is sufficient.

Trying every possible distribution that fits this general pattern is of course
not practical and so optimization techniques are used to find the besedegre
distribution subject to the desired constraints. Optimizing over the density evo-
lution algorithm is not straightforward, in particular because a gradierthéo
cost function is not defined. Nevertheless, two general optimizationithlger
have been applied to finding the degree distributions of LDPC cateeative
linear programmingand the confusingly named (for udifferential evolution

3.4 Bibliographic notes

The type of analysis of message-passing decoding which we now caltylen
evolution first appeared for regular codes in Gallager’'s work [1}.iFFegular
codes density evolution was first proposed in [15] when considerinbitizey
erasure channel, applied to hard decision message-passing decodihgrid
generalized to sum-product decoding on memoryless channels in [1D06]
line implementations of density evolution can be found at [17] and [18],
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Topic 4: LDPC Code Properties

In this topic low-density parity-check (LDPC) codes are discussed iril datia

a focus on code design, encoding, and performance. Firstly thergespef
LDPC codes are considered and the difference between classicalaie@nd
message-passing decoders is made apparent when considering dhavtnyan
message-passing decoding algorithms fail.

Secondly, LDPC codes with linear-time encoders, in particular quasi-cyclic
codes and repeat-accumulate codes, are considered. Finally, a mirsber
cific methods for code design are presented. Pseudo-random atiostsu
are considered with many of the more recent strategies for cycle andgseu
codeword removal presented and structured LDPC codes are cmubigi¢h a
focus on codes from combinatorial designs.

4.1 LDPC properties

While there is no one recipe for a “good” LDPC code, there are a nunfber o
principles which inform the code designer.

Firstly, a good LDPC code is also a good classical block code. The pmiwer
sum-product decoding is that it can decode very long codes, but ivésthe-
less a sub-optimal decoding algorithm which can only do as well as the optimal
decoder (were it possible to implement the optimal decoder). If the LDPE cod
has a poor minimum distance the sum-product decoder will produce an erro
floor in exactly the same manner as the ML or MAP decoder. That LDPGCscode
often do not show an error floor is because, for very long and yEaxse codes,
it is relatively easy to pseudo-randomly construct a code with a good minimum
distance.

A good classical code is however not necessarily a good LDPC codst M
critically, the sparsity of the parity-check matrix], is essential to keep the
decoding complexity low. A sparsH also guarantees the linear growth in
minimum distance with length proven for LDPC ensembles. A good Tanner
graph also has a large girth and good expansion. This increases themofmb
correlation-free iterations and improves the convergence of the decode

Other desirable properties of LDPC codes depend on how they are to be
applied. For a capacity-approaching performance on very low noesenels,
long code lengths and random or pseudo-randomly constructed inr@ginity-
check matrices produce the performance closest to capacity. Howapacity-
approaching performance (in the bit error rate) equate to poor wood rates
and low error floors, making capacity-approaching codes completeljtabke
for some applications.

For long codes a randomly chosen parity-check matrix is almost always
good and structured matrices are often much worse. However, for @har
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medium-length LDPC codes irregular constructions are generally not better
than regular ones and graph-based or algebraic constructions tarform
random ones. In addition, using structured parity-check matrices cedrtdea
much simpler implementations, particularly for encoding, and can guarantee
girth and minimum distance properties difficult to achieve randomly for shorter
codes. In particular, for very low error floors a reasonably shgetaaic con-
struction with large column weight will produce the required performances,
with the trade off of a larger gap to capacity.

4.1.1 Girth and expansion

Cycles in the Tanner graph lead to correlations in the marginal probabilities
passed by the sum-product decoder; the smaller the cycles the fewamthe n
ber of iterations that are correlation free. Thus cycles in the Tannph@h

fect decoding convergence, and the smaller the code girth, the largeffebe
Definite performance improvements can be obtained by avoitinygles and
6-cycles from LDPC Tanner graphs but the returns tend to diminish as the gir
is increased further.

It is important to keep in mind that when considering the properties of
an LDPC code we are often actually considering the properties of a particu
lar choice of parity-check matrix for that code, and that a differentcghof
parity-check matrix for the same code may behave differently.

Exampled. 1
The parity-check matrices
1 1.0 1 0 07
01 1010
Hi=11790011
101 110 |
and ) }
110100
01 1010
H2=11 00011
(00110 1]

both describe the same code, but have Tanner graphs with differtmt lgig-

ure 4.1 shows the performance of sum-product decoding using edbles
parity-check matrices on the same channel. Removing a single 4-cycle from
the parity-check matrix has noticeably improved the performance of the sum-
product decoder even though exactly the same code is being decndegid 5

we will outline some of the methods used to construct Tanner graphs without
short cycles.

A related concept to the graph girth is the grapdpansion In a good ex-
pander every subset of vertices has a large number of neighboraréhabt

A small subset of LDPC codes which include 4-cycles have been stuoperform well with
sum-product decoding, however this effect is due to the large nuofileatra linearly dependent
rows in these parity-check matrices which helps to overcome the negatraet of the cycles.
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Figure 4.1: The bit error rate performance of sum-product decoding on an AVé@annel
using the parity-check matrices from Example 4.1.

in the subset. More precisely, any subSetf bit vertices of sizen or less is
connected to at leastS| constraint vertices, for some definedande.

If a Tanner graph is a good expander then the bit nodes of a small set of
erroneous codeword bits will be connected to a large number of chetdsno
all of which will be receiving correct information from an even largeminer of
the correct codeword bits. Sipser and Spielman [19] showed that tlaasxn
of the graph is a significant factor in the application of iterative decodirsgngdJ)
only a simple hard decision decoding algorithm they proved that a fixetidnac
of errors can be corrected in linear time provided that the Tanner gragjoisd
enough expander.

4.1.2 Stopping sets and pseudo-codewords

As we saw in Topic 1, the message-passing decoding of LDPC codeasurer
channels is particularly straightforward since a transmitted bit is eitheveztei
correctly or completely erased. Decoding is a process of finding pdrégkc
equations which check on only one erased bit. In a decode iteration all suc
parity-check equations are found and the erased bits corrected. tAéise
bits have been corrected any new parity-check equations checkingjyore
erased bit are then corrected in the subsequent iteration. The piooessated
until all the erasures are corrected or all the remaining uncorrectag-pheck
equations check on two or more erased bits. The question for codingstiseor
is when will this occur and why.

For the binary erasure channel at least, the answer is known. Thageess
passing decoder will fail to converge if the erased bits include a setief oibs,
S, which are astopping set A stopping setsS, is a set of code bits with the
property that every parity-check equation which checks on a lditéhecks on

ACOoRN Spring School
version 1.1
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Figure 4.2:The Tanner graph of a lengthcode with a stopping set of size three shown in
bold.

at least two bits ir5. The size of a stopping set is the number of bits itincludes,
and the minimum stopping set size of a parity-check matrix is dengigd

Exampled.2
Fig. 4.2 shows the Tanner graph of a lengibarity-check matrix witl8 parity-
check equations and filled bit nodes representing a stopping set of see th

The message-passing decoder cannot correct a set of erasédvidiish
are a stopping set. Since every parity-check node connect&drtoludes at
least two erased bits there will never be a parity-check equation available to
correct a bit inS, regardless of the number of iterations employed. In a sense
we can say that the decoder has converged to the stopping set. Thiegtgp
distribution of an LDPC parity-check matrix determines the erasure pattrns f
which the message-passing decoding algorithm will fail in the same way that
the codeword distribution of a code determines the error patterns for wech
ML decoder will fail. The minimum stopping set size determines the minimum
number of erased bits which can cause a decoding failure.

Example4.3.

The same LDPC code used in Example 1.12:

110100
011010
H= 1 00 01 1
001101
is used to encode the codeword
c=[001011].

c is sent though an erasure channel but this time the 3-rd, 5-th and 6-thebits a
erased and so the vector
y=1[00z0zzx]

is received. Message-passing decoding is used to recover thd biiase
Initialization is M; = y; which gives

M=[00x0xz].
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For Step 1 the check node messages are calculated. The 1-st chedk nod
joined to the 1-st, 2-nd and 4-th bit nodes, and so has no incomimggssages.
The 2-nd check includes the 2-nd, 3-rd and 5-th bits, and so redsiees’
messages M3 and M5) and thus cannot be used to correct any codeword bits.
The 3-rd check includes the 1-st, 5-th and 6-th bits and so also redeives
messages M5 and Mg) and thus cannot be used to correct any codeword bits.
Finally, the 4-th check includes the 3-rd, 4-th and 6-th bits and so receie
‘z’ messages, /3 and M) and thus also cannot used to correct any codeword
bits.

In Step 2 there are no new messages coming into any of the erased bits and
no corrections can be made. Regardless of how many iterations are ran the
will never be a corrected erased bit. By examinatiorHofit is clear why this
is the case: the set of erased codeword bits is a stopping &&t in

Knowing exactly the places where the decoding algorithm will fail allows us
to predict its performance. Indeed, if the stopping set distribution of aRC.D
parity-check matrix were known, the performance of the message-paisin
coder on the BEC could be determined exactly by counting the stopping sets.
The probability of bit erasure for a given parity-check mattik, of lengthn
on a binary erasure channel with erasure probalbkility

P(H,e) =Y (1)e"(1— )" <];((:))> , (4.1)

v=0

whereT'(v) is the total of number bit sets of sizeand N (v) is the number of
those bit sets which are stopping sets.

Finding the stopping set distribution of an individual parity-check matrix is
as prohibitively complex as finding its codeword distance distribution, hewyev
theaveragestopping set distribution of a regular LDPC ensemble can be found
combinatorially. This technique, calldihite-length analysisgives the exact
average bit and block error probabilities for any regular ensemble ¢t@.D
codes over the binary erasure channel (BEC) when decoded igdyatiwom
the ensemble perspectiZ&v) is the total of number of ways a bit set of size
v can be constructed over all possible codes in the ensemblé&’andis the
number of those ways which result in theoints being a stopping set. Thus
N(v)IT(v) can be considered the probability that a given set pbints is a
stopping set.

Every codeword is a stopping set. This is easy to see since any check on a
non-zero bit in the codeword must include an even number of non-oe®-c
word bits to ensure even parity. Thus the set of stopping sets includestthie s
codewords. However, not all of the stopping sets correspond tav@rds. The
stopping set in Fig. 4.2 for example is not a codeword.

Not all parity-check matrices for the same code will have the same stop-
ping set distribution or same minimum stopping set size. Fig. 4.3 for exam-
ple shows the Tanner graphs of two parity-check matrices for the saneg cod
one with three size-3 stopping sets and one with two size-3 stopping sets. The
two common stopping sets include bits, 2,4} and{1,3,5}. Every possible
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Figure 4.3:The Tanner graph of two different parity-check matrices for the szode.

parity-check matrix for this code will also contain stopping sets in these bit
locations.

The role of stopping sets in predicting the performance of message-gassin
decoding on the BEC tells us that for message-passing decoding, umlié fo
decoding, properties other than the codeword set influence the aquarfier-
mance. The same is true of message-passing decoding on more geaaral ch
nels, however defining the configurations which lead to decoder failutteein
general case, callquseudo-codewords less straightforward.

Stepping back briefly we note that the low complexity of iterative message-
passing decoding is because the algorithm operates locally on the Taapker g
representing the matrik/ (i.e. each node in the decoding algorithm acts only
on the messages it can see, not on the other messages in the graphanTeis s
operation also leads to a fundamental weakness of the algorithm: becacise it
locally, each node does not know the whole structure of the Tannen.grap

An alternative graph which would produce, locally, the same LLRs as the
actual Tanner graph is called a finite lift ooverof the Tanner graph. Pseudo-
codewords can be thought of as the set of valid codewords in all finiteofifts
the Tanner graph. Since the message-passing decoder cannot latadfyuish
between the actual Tanner graph and the lifted graphs, any codewang wf
the lifted graphs is as equally valid as a codeword in the Tanner grapts Thu
when we say that the decoder has failed to converge it has actuallyrgedve
to one of these pseudo-codewords.

4.1.3 Threshold vs. erasure floor using stopping sets

Unfortunately, the LDPC codes which are capacity approaching hasegro
ror floor performances, while the codes with extremely low error floove ha
thresholds far from capacity. The large number of weight-2 nodesnedusy
optimizing the degree distribution result in a reduced minimum distance for the
ensemble. This tradeoff is made more precise on the BEC using stopping sets.
On the binary erasure channel the message-passing decoder willktifesl if
erased bits contain a stopping set and so, for a given erasure ragaptted
number of stopping sets will determine the expected error rate of the decode
To determine the impact of the weight two nodes only the stopping sets in the
subgraphy/z, which includes the degree-2 bit nodes, all of the edges connected
to degree-2 bit nodes and the check nodes connected to the degtewm@ds
by an edge, are considered.
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Since the degree of all the bit nodesZinis 2, a stopping set of sizein 7
is also a cycle of sizek. The expected number of cycles of siza a lengthn
ensemble is:

Moo (1))F _
Et—cyeles(Cr(x),p(z), M) = (2/)2](6)) +0(n™'%), (4.2)

and thus the average probability that a randomly chosems@dset of the
Yon degree-2 bit nodes in the ensemblg,) ,,) is a stopping set is:

(Aop/(1))"/20 + O(n~ %)

Pss(Ch(z),p(z), V) =

(")
The word error rate on the BEC with erasure probability lower bounded by
summing over the contribution of stopping sets of size 2,...,9n in the

1on degree-2 bit nodes:

pan
n
EwWER(C(x),p(z), s €) = Z (% >€SPSS(C)\(95),p(9:)75)

han (A
_Z ( 2( +0(n1/3)>, (4.3)

wheree?® is the probability of an erasure of size at leastcurring. For asymp-
totically long codes,

Pon
. . (A2 (1)e)*
> - = 7 7
nlggo EWER<C)\(x),p(:E)7 n, 6) = wglrlbriloo . 25
s=

_ ln( ! ) - (AQ”;(I)G). (4.4)

1+ Aop/(1)e

For randomly constructed LDPC codes from the ensemble with degree dis-
tribution pair (\(x),p(x)) and girthg, the expected error floor performance of
the ensemble will be dominated by stopping sets of gf2eand the word error
rate is approximated by

/ 1 g
W, & (M’; )e)® (4.5)
To bound the ensemble degree distribution to obtain a word error rate bB&jow
the degree distribution is constrained to satisfy:

E
p(L)e’

ande* is the threshold value returned by density evolution. Thdse* corre-
sponds to the error floor region of the WER curve, makihgn ideal erasure
probability at which to evaluate (4.5). Note that settifig= 1 returns the sta-
bility constraint for the BEC and the traditional optimized degree distribution is
returned.

Ao < where E £ (gWg)2/g, (4.6)
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Figure 4.4. Average decoding performances of LDPC ensembles with con
strained degree distributions from Example 4.4.

Exampled.4.
Fig. 4.4 shows the simulated ensemble average performance, using message
passing decoding, of codes with varying degree distributions. Theulenegn-
semble gives the best threshold performance, but a very poor eroorithile

the regular LDPC ensemble has a better error floor and worse threskod.
constrained degree distributions allow a tradeoff between the threshblekran

ror floor performance to be made.

Similar arguments apply to constraining the degree distributions of LDPC
codes designed for more general memoryless channels. For theselshéme
number of low weight codewords withify, are controlled by constraining,.

4.2 Easily encodable LDPC codes

Rather than trying to convert a parity-check matrix into an encodable ftiem a
it has been produced, encodability can be instead be incorporated irde-the
sign of the parity-check matrix. For classical codes this has been shaites
achieved using cyclic and quasi-cyclic codes and the same ideas capliee ap
to LDPC codes.
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4.2.1 Quasi-cyclic codes

A code isquasi-cyclicif for any cyclic shift of a codeword by places the
resulting word is also a codeword, and so a cyclic code is a quasi-cyd& co
with ¢ = 1. The simplest quasi-cyclic codes are row circulant codes which are
described by a parity-check matrix

H=[A1, As,..., A, 4.7)

whereA, ..., A; are binaryv x v circulant matrices.
Provided that one of the circulant matrices is invertible (daythe gener-
ator matrix for the code can be constructed in systematic form

(A7t AT
I AtA)T
(= W (4.8)

(A;lAl_l)T

resulting in a quasi-cyclic code of lengtih and dimensiow(l — 1). As one of
the circulant matrices is invertible, the construction of the generator matrix in
this way necessarily leads to a full rafk

The algebra ofv x v) binary circulant matrices is isomorphic to the algebra
of polynomials modula:’ — 1 over GF(2) [20]. A circulant matrip4 is com-
pletely characterized by the polynomidl:) = ag+ajz+- - -4a,_12°~! with
coefficients from its first row, and a codéof the form (4.7) is completely char-
acterized by the polynomials (), .. ., a;(x). Polynomial transpose is defined
as

n—1
a(x)t = Zaixn_i (z" =1).
=0

For a binary code, length = v/ and dimensiot = v(l — 1), thek bit message
[ig, i1, ... ,1x_1] iS described by the polynomials) = ig+ijz+- - -+ip_12zF "
and the codeword for this message:(s) = [i(z), p(x)], wherep(z) is given

by

-1

p(z) =) ijx) * (a7 ' () * a;(2))", (4.9)

j=1
i;(z) is the polynomial representation of the information bjts_1) to i,; 1,

ij(x) = ly(j—1) T ly(j—1)41T + -+ Z'vj_ll’vfl

and polynomial multiplication«) is moduloz — 1.

Example4.5.
A rate% quasi-cyclic code withy = 5, is made up of a first circulant described
by a1 (x) = 1 + x, and a second circulant describeddsyr) = 1 + 22 + z*.

11 1 1 1
1 1 1 1 1
H = 11 11 1
1 111 1 1
1 1 1 11
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parity checks

bits in the first circulant bits in the second circulant

Figure 4.5: A Tanner graph for the quasi-cyclic LDPC code in Example 4.5

The second circulant is invertible
ayt(z) = 2® + 2% + 24,

and so the generator matrix contairfs:a5 identity matrix and thé x 5 matrix
described by the polynomial

(a;l(a:) * al(a:))T =1+ x2)T =1+a°.

Fig. 4.5 shows the Tanner graph fér.

Linear-time encoding can be achieved usfhg- 1) v-stage shift registers
with separate length shift registers for each circulant @.

Example4.6.
A quasi-cyclic, length-108, rate-3/4 LDPC code has the parity-checkxmatr

H =[A;, Ay, As, Ayl.
H consists of four circulants defined by
ar(z) =1+2° +2'°,
az(z) = 2% + 2% + 28,
az(z) =z + 2® + 27,
as(z) = + z'3 4 2%,

The polynomialu () is invertible with inverse given by

aZl(az) — .T+:IZ4—|-:L’5+IE6+$7+$9+(IZ12+$13+ZE15+$17+$20+$21+.T23+{L’24+CU25,
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and so the parity-check matrix can be put into systematic form
Hs = [A; Ay, AL Ay, AL Az, Ty,
We thus have,

aj'(@)ar(z) = 1+a+at+2°+27+2% + 2t + 213 + 215 4 218 4 219
+22? 4 223 4 225 4 2?6

a7 ()az(@) = 2t + 25 + a7 + 210 4 213 4 gl 4 215 4 18 4 19 4 g2
D22 g2y g2 | 25 4 26

and the generator matrix for this code is:

(A7t AT
G = It (AzlAg)T
(At Ag)T

Using G in this form the code can be encoded using shift registers. Figure 4.6
shows an encoding circuit for this code.

Note that although we usHs to constructG we will use the original ma-
trix, H to do our decoding. Botlif and Hs are valid parity-check matrices for
the code, howeveH has the properties required for sum-product decoding.

Block circulant quasi-cyclic codes

More general quasi-cyclic codes are thleck circulantcodes. The parity-
check matrix of a block circulant quasi-cyclic LDPC code is:

I, I, I, S I,
Ip Ip(p1,1) Ip(p1,2) e Ip(p1,w,)
Ip Ip(pwc_]-yl) Ip(pwc_172) ct Ip(pwc_lzwr_l)

wherel, represents thex p identity matrix and/,,(p; ;) represents the circulant
shift of the identity matrix by +p; ;( mod p) columns to the right which gives

the matrix with ther-th row having a one in thé + p; ; mod p)-th column.
Block circulant LDPC codes can have better minimum distances and girths than
row-circulant codes.

4.2.2 Repeat-accumulate codes

Earlier we saw that an LDPC code can be put into an approximate upper trian
gular form so as to facilitate almost linear-time encoding. A repeat-accumulate
(RA) code is an LDPC code with an upper triangular form already built irgo th
parity-check matrix during the code design.

An m x n RA code parity-check matri¥/ has two parts:

H = [Hy, Hy), (4.10)
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§ >CBZ...C108

us4 --

Figure 4.6: Encoding circuit for the = 108, £ = 81 LDPC code from Exam-
ple 4.6.
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whereH> is anm x m matrix with the form:

100 000
110 000
11 000

Hy = : : . (4.11)
000 100
000 -~ 110
0 0 0 01 1|

The parity-check matrix of an RA code is callgd a)-regular if the weight
of all the rows of H; are the sameg, and the weight of all the columns of
H, are the samey. Note that a regular RA parity-check matrix has columns of
weight2, and one column of weighit in H, and so is not regular in the sense of
(j,r)-regular LDPC codes. An irregular RA code will have an irregular column
weight distribution inHy, with H the same as for a regular code.

Exampled.7.

A (3,2)-regular RA parity-check matrix for a length-10 rate-2/5 code is:
1.1 . 1 i
10111
r*r . . . 1 1 .

H= 11011 (4.12)

r .1 . . . . 1 1 .
.1 .1 . . . .11

As for LDPC codes, the Tanner graph of an RA code is definell byhere
there is a parity-check equation vertex for every parity-check equittinand
a bit vertex for every codeword bit. The Tanner graph of an RA cahsists
of m = kq/a check vertices antl + m = k(q + a)/a bit vertices.

Unlike for a general LDPC code, the message bits in the codeword of an
RA code are easily distinguished from the parity bits. Fig. 4.7 shows thesfann
graph for the RA code from Example 4.7. We distinguish betwaersage bit
verticescorresponding to th& message bits in the codeword, shown at the top
of the graph, angarity bit verticescorresponding to thé/ parity-check bits in
the codeword, which are shown at the bottom of the graph.

Encoding RA codes

The encoding of an RA code is split into four main operations. Firstly, since
H is systematic we know that the columns &f correspond to the message
bits. From the column regularity df; we see that each message bit is repeated
q times, which can be implemented with a ratg; repetition code Next, the
row regularity of; shows that for every parity-hit of these repeated message
bits are summed modulo 2, a process that we implement usiognainer The
final step is to define the mapping of the repeated message bits to the combiner
inputs. This is done by defining a permutation pattdrcalled aninterleaver
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message bits

O O O

parity bits

Figure 4.7: The Tanner graph for the RA parity-check matrix in Examplé.(4.7

Example4.8.
The code in Example 4.7 is a lengih-RA code withq = 3 repetition code,
a = 2 combiner and the interleavér = [1, 7,4, 10,2,5,8,11, 3,9,6, 12].

The encoding process is as follows: ThE bits at the output of the rep-

etition code are; copies of theK message bitsn = [m4,...,mg], in the
form

b = [b,ba,...,b4K]

= [my,my,...,m1, Mo, Ma,..., M2, ..., MK, MEK,...,MK],
q q q
and so we have
bi = my), f@@) =1Ti/ql, (4.13)

where[z] denotes the smallest integer greater than or equal to

The interleaver patterd] = [y, 71, ..., m,], defines a permutation of the

input bits,b = [by, ba, .. ., b,], to the output bits
d=[di,do,...,dyn] = [bay,bryy .-, bn, ] (4.14)

Thus two different interleaver patterns will describe the same RA code if the
difference in the permutation pattern results in a difference in which cotheof
same message bit is used.

The bits at the output of the interleaver are combined, modulo-sets
of a bits, before being passed to the accumulator. Thus\the: K¢/a bits,
r = [ry,79,...,7)], at the output of the combiner, are given by

i = d(i—l)a+1 D d(i—l)a+2 @ DB dig, i=12,..., M, (415)

where® denotes modulo-2 addition.
Finally, the M parity bits,p = [p1,p2, ..., pum], at the output of the accu-
mulator are defined by

Di = Pi—1 D1y, i1=1,2,..., M. (4.16)
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Figure 4.8: The encoding circuit for RA codes.

k message bit vertices

repetition
code

interleaver

% combiner
% accumulator

Figure 4.9: An RA code Tanner graph.

m parity bit vertices

We considersystematidRA codes, that is codes for which both the original
message bits and the parity bits are explicitly sent to the receiver, and so the
final codeword ixc = [my,ma,...,mg,p1,p2,. - ,pM}, and thus we have a
code with lengthV = K (1 +q/a) and rateR =

The rows of H; describe the equations in (4 13) (4.15), e.g. if we have
r; = Me, + M, then thei-th row of H; is ‘1’ in the columnsc; andcz and O’
elsewhere. In equation (4.10Y, is anM x M matrix which describes (4.16):

Fig. 4.8 shows the encoding circuit for RA codes.

Those familiar with turbo codes will note that the encoder of an RA code
looks a lot like that of a serially concatenated turbo code. Indeed RAscode
were first presented as a simple class of turbo codes for which codiogete
could be developed. The two component codes are the repetition code and

1
1+D

convolutional code which is the accumulator. Fig. 4.9 shows the relationship
between the LDPC and turbo code representations of an RA code.
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4.3 Bibliographic notes

The effect of cycles on the practical performance of LDPC codesdeawmon-
strated by simulation experiments when LDPC codes were rediscovered by
MacKay and Neal [21] in the mid-1990s, and the beneficial effects ibigus
graphs free of short cycles were shown [7]. By proving the cayemee of the
sum-product algorithm for codes whose graphs are free of cycleser was

the first to formally recognize the importance of cycle-free graphs in thiegb

of iterative decoding [2].

Stopping sets were introduced in [22] and used to develop analysis tools fo
finite length LDPC ensembles. For more on stopping sets and finite-length
analysis see [23-25] while a good source for more information on pseudo
codewords is [26].

Quasi-cyclic codes, were first presented in [27] and [20], for adgoe
troduction to quasi-cyclic codes see [28] or [8]. Block circulant qugslic
LDPC codes are well presented in [29].
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Topic 5: LDPC Code Construction

In the previous topic a number of the properties that make a good LDPC code
have been discussed. In this section some of the methods used to construct
LDPC codes which achieve these properties are outlined.

5.1 Graph based constructions

For long codes, randomly choosing a parity-check matrix almost alwans pr
duces a good code. In fact for very long codes this is guaranteedebgotit
centration theorem which says that behavior of randomly chosen caaesih
ensemble concentrates around the ensemble average. Neverthelpsactio

cal applications the codes may not be long enough and a user is not going to
accept a code that “will probably” work. Most codes are construatdéast
pseudo-randomly, where the construction is random but certain bdigjwaea

tions such as 4-cycles, are either avoided during construction or rehades-
wards. Some of these techniques are considered in the following:

Column or row splitting

In this technique cycles, or indeed any unwanted configurations, in the
parity-check matrix are removed by splitting a column or row in half. In col-
umn splitting a single column iff is replaced by two columns which share the
entries of the original column between them. Since an extra column has been
added, a new code is produced with length one greater than the preuvitels ¢
and with a parity-check matrix made slightly more sparse.

Exampleb.1
Figure 5.1 shows column splitting applied to remove a 4-cycle.

o O O O O

Figure 5.1: Column splitting to remove a 4-cycle.

71



Figure 5.2: Row splitting to remove a 4-cycle.

O m 0 B B B H B m
O O @
|
2}31
1
|
0O 0 @B 0O 8B @ O 0O 0 B O 80 8 @

Figure 5.3: Bit filling to avoid cycles of size 4.

Alternatively, a single row ind can be replaced by two rows which share
the entries of the original row between them. Since an extra row has been
added, a new code is produced with 1 more parity-check equatifrtivan the
previousH and with a parity-check matrix which is slightly more sparse.

Exampleb.2
Figure 5.2 shows row splitting applied to remove a 4-cycle.

Bit filling or progressive edge growth (PEG) Tanner graphs

In bit filling bit nodes are added to the Tanner graph one at a time and edges
connecting the new bit nodes to the graph are chosen to avoid cyclesof siz
g. For each new bit nodk, w. check nodes are selected to join by an edge to
b;. The set of feasible check nodes are the nodes that are digt&hoe more
edges away from all of the check nodes already connected-th From each
set of feasible check nodes the check node chosen is the one whichdeds
so far (i.e. with the lowest degree). Fig 5.3 shows this process.

In progressive edge growth Tanner graphs edges are similarly &oldeel
graph one at a time but instead of meeting some fixed girth requiregribiet
edge is added so as to maximize the local girth at the current bit node.

These techniques can also be applied to semi-structured codes, i.e. an RA
code can be constructed by fixing the accumulator portion of the Tanagh gr
and applying bit filling to the remaining bit nodes.
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5.2 Codes from designs

A combinatorial design is an assignment of a set of objects into subsetstsubje
to some defined condition on the size, structure or incidence of the subsets.

Examples.3.
A simple combinatorial problem is to arrange a set of seven academics into
seven committees with three academics in each committee, every academic
serving on the same number of committees, and each pair of academics serving
together in exactly one committee. The set of academics (points)

P ={1,2,3,4,5,6,7}
can be formed into a design with committees (blocks),

B={[1,3,5],[2,3,7],[4,5,7],[1,6,7],[1,2,4],[3,4,6],[2,5,6]}. (5.1)

Formally, anincidence structuréP, B, 7) consists of a finite non-empty set
P of points (academics) and a finite non-emptySe&lf subsets of those points
called blocks (committees), together with an incidence relafigh? x B. A
point P and blockB areincident denotedP € B, if and only if (P, B) €
Z. A designD is an incidence structure with a constant number of points per
block and no repeated blocks. A desigrrégular if the number of points in
each block, and the number of blocks which contain each point, desighated
andr respectively, are the same for every point and block in the design. In the
field of combinatorial designs the block size is usually denoted by the symbol
k, however we use in this thesis to avoid confusion with the usekofor the
number of message symbols in the code.

Every design can be represented by a b binary matrix N, v = |P|,
b = |B| called anncidence matrixwhere each column ifv represents a block
B of the design and each row a poiit The (i, j)th entry of NV is a one if the
i-th point is contained in thg-th block, otherwise it is O:

. 1 ifPe Bj,
Nij = { 0 otherwise. (®-2)

The incidence graphof D has vertex seP | J B, with two verticesz andy
connected if and only it € P,y € BandP, € By, orxz € B,y € P and
P, € B,, and is thus a bipartite graph.

Exampleb.4.
The design in Example 5.3 can easily be seen to satisfy the regularity constrain
with v = 3 points in every block (3 academics in every committee) and each
point in exactlyr = 3 blocks (each academic on exactly three committees). An
incidence matrix and incidence graph for this design are shown in Fig 5.¢ usin
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O block nodes
@ point nodes

Figure 5.4: An incidence graph of t2e(7, 3, 1) design in Example 5.3.

an ordering of blocks 1-7 respectively from left to right.

1001100
0100101
1100010

N=|0010110
1010001
0001011

011100 0]

The design in Example 5.3 is from a class of designs called 2-designs Thes
designs have the property that every pair of points appear togetherxad fi
number) of blocks together and are denoted«24, r, v, \). For the design in
Example 5.3, each pair of points (academics) occurs in one block (committee)
together thus the blocks i form a 2-design withv = b = 7, v = r = 3,
and)\ = 1. The2-designs with\ = 2, called Steiner 2-designs, are particularly
useful for LDPC codes. An LDPC code is defined by setting the incidence
matrix of the design as the parity-check matrix of the code. Designs which
are regular give regular LDPC codes and sparse codes are defirnddosing
designs withy andr small relative tov andb. In particular 4-cycle free LDPC
codes are guaranteed by choosing Steiner 2-designs since each paiimte
(rows of H) cannot occur in more than one block (columnff together and
so a 4-cycle cannot be formed.

Combinatorial designs and error correction codes have a long history to-
gether. The blocks of a design can be associated with the codeworde®déa
as for thegeometric codeswhich have minimum weight codewords the inci-
dence vectors of the blocks of a projective or Euclidean geometry desitie
minimum weight codewords of Reed-Muller and punctured Reed Mullerscode
are the blocks of the P@, 2) designs while the generalized Reed-Muller codes
have as minimum weight codewords the blocks of the geometri¢siP43.

Designs have also played a role in defining new codes such as in the case
of difference set cyclic codes. In this case the codes were defined te
transpose of the incidence matrix of the projective geometry desigf2,8G
as the code parity-check matrix. The properties of these projective ggome
designs are well suited to the majority logic decoding algorithm. More recently
these codes have had an important impact on the field of iterative decoding
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when it was shown that the properties that make them majority logic decodable
also make them excellent LDPC codes.

From a combinatorial perspective, a design is generally associated with a
code of lengthv defined as the column space of the design incidence matrix
N, called itsblock codeor a code defined as the column space of the design
incidence matrix transpos&”, called itspoint code. The block code of a
design can be thought of as the code with generator matrix givevi’layMost
of the general results about designs in codes including the celebratetuss
Mattson theorem [30] consider these block codes.

For LDPC codes the dual codes of the block and point codes are adshter
The dual of the block (respectively point) codes have as their duaksibe
column space oN (respectivelyN 7). Thus the incidence matrix of the design,
or its transpose, is the parity-check matrix of the code. The dual of thé poin
code, using the incidence matrix of a design as the parity-check matrix of the
code, in particular, are used to define LDPC codes.

Finite geometries

An area closely related to designs is that of finite geometries. The finite
projective geometry of a vector spate of dimensionm + 1, PG(/), has
as elements the subspaceslaf The points of PG() are the 1-dimensional
subspaces oV, the lines are2-dimensional subspaces &f, the planes are
3-dimensional subspaces ®f and so on to hyperplanes the-dimensional
subspaces o¥. The incidence between elements of P((corresponds to
containment between subspaced/0fThus a pointP is incident with a linel
in PG(V) if the 1-dimensional subspace corresponding’tis contained in the
2-dimensional subspace correspondind.toFor V' a vector space of dimen-
sionm + 1 over the fieldF = GF(g), the projective geometry is often written
PG(m, q). A Euclidean geometry E®{) has as elements the cosets- U of
the subspacel of V wherex is any vector inV” and incidence is again given
by containment.

Designs can be formed by taking as points of the design the points of the
geometries and as blocks the lines, planes or hyperplanes of the georitletry w
the incidence of the geometry carried into the design. The designs consisting
of the points and lines of P@, ¢) arefinite projective planesf orderq. The
PG designs, which give us PG-LDPC codes, are the sgt #fg + 1 lines and
q> + ¢ + 1 points such that every line passes through exagtlyl points and
every point is incident on exactly+ 1 lines. Since, any pair of points in the
plane must be incident together in exactly one line. The points and lines of a
projective plane are the points and blocks of &2~ ¢ + 1,¢ + 1,1) design
with the incidence of the design given by the incidence of the plane. Fig. 5.5
shows the typical representation of the finite projective plane of &¢ddie
designs of points and lines of R@, 2) are the classical Steiner triple systems
or 2<v, 3, 1) designs which lead to STS-LDPC codes.

Exampleb.5.
Figure 5.5 shows the finite projective plane of order 3 which consists of 13
points onl13 lines.
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Figure 5.5: The finite projective plane of order 3 consists of 13 point$3on
lines

An important outcome of the work with algebraic codes was the demonstra-
tion that highly redundant parity-check matrices can lead to very goodivera
decoding performances without the need for very long block lengthde\itie
probability of a random graph having a highly redundant parity-chedkixna
is vanishingly small, the field of combinatorial designs offers a rich soufrce o
algebraic constructions for matrices which are both sparse and redunda

Examples.6.
Starting with the Euclidean geometry E%2%) the EG design is the?s — 1
points of the geometry not including the origin and blocks of the design are
the 225 — 1 lines of the geometry which do not pass through the origin. The
incidence matrix of this EG design is thus a squabé x 255 matrix with
column and row weights both 16. Although this incidence matrix is square it
has a large number of linearly dependent rows, and 8ank

The dual of the block code of this EG design, i.e. the code with parity-check
matrix IV, produces a length 255 rat&5 /255 LDPC code with a6, 16-regular
parity-check matrix.

Figure 5.6 shows the bit error rate performance on an AWGN chanrzel of
short EG LDPC code from a Euclidean geometry compared to an LDPC con-
structed pseudo-randomly using Neal’s construction. Although botrsduaie
the same length and rate the EG code has significantly more rows in its parity-
check matrix, and a much greater minimum distance, of 17, which gives it its
improved performance.

Partial geometries

LDPC codes have also been defined from a more general class ofislesig
called partial geometries A partial geometry is a set of points, and subsets
of those points, called blocks or lines, completely specified by three parame-
ters,s, t, anda. A partial geometry, denoted pgt, o), satisfies the following
properties:

P1. Each pointP is incident witht 4 1 blocks and each block is incident
with s + 1 points.
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Figure 5.6: The decoding performance of length-256 LDPC codes AW&iN
channel using sum-product decoding with a maximum of 200 iterations.

P2. Any two blocks have at most one point in common.

P3. For any non-incident point-block pai®, B) the number of blocks inci-
dent with P and intersecting? equals some constant

Examples.7.

The incidence matrix of the partial geometry(1, 2, 1) is:
1 110 0 0 0 0 07

100100100

N — 000111000

01 0 01O0O010O0

001 001001
(00000011 1]

Fig 5.7 gives its incidence graph.

The subset of the partial geometries with= s + 1 are exactly Steiner
2-designs since if a poin® is not incident in a blockB, every block incident
with P must intersecB and thus every pair of points must appear in a block
together. The four main classes of partial geometries are:

e a partial geometry witlw = s + 1 is a Steiner 2-design @¢(v, s + 1, 1)
design,

e a partial geometry witle = ¢ is called anetor, dually witha = s, a
transversal desiggTD),

Introducing Low-Density Parity-Check Codes ACOoRN Spring School
Sarah Johnson 77 version 1.1



Figure 5.7: The incidence graph for the partial geometry pg(1,2,1) in Exam-
ple 5.7.

e a partial geometry witlv = 1 is called ageneralized quadranglgsQ),
e if 1 < a < min{s,t} the partial geometry iproper,

The transversal designs, generalized quadrangles, and partiabfess also
make good LDPC codes. The generalized quadrangles in particulaefiag d
LDPC codes with girth 8.

Examples.8.
The incidence matrix of the transversal design, with= s = 2 and¢ = 15,
produces the parity-check matrix of a length-256 rate-214/2586)-regular
LDPC code. Figure 5.6 also shows the bit error rate performance olM&BN
channel of a short LDPC code from a transversal design compasdlitbPC
constructed pseudo-randomly using Neal's Algorithm.

In addition to a deterministic construction and guaranteed lower bounds
on girth and minimum distance the LDPC codes from combinatorial designs
can also produce codes which offer straightforward encoders.y Maithe
STS, Euclidean and projective geometry designs produce cyclic argi- qua
cyclic codes. For example the quasi-cyclic code in Example 4.6 was derived
from a cyclicly resolvable STS design. However, even for designsiwdie
not cyclic, straightforward encoding can be achieved using the steuoftine
design.

Further quasi-cyclic LDPC codes can be constructed explicitly using com-
binatorial structures called difference families.

Difference families

Row-circulant quasi-cyclic LDPC codes can be constructed using combi-
natorial deigns calledifference families A difference family is an arrange-
ment of a group ofv elements into not necessarily disjoint subsets of equal
size which meet certain difference requirements. More precisely: tThe
element subsets, called base blocks, of an Abelian géup,, ..., D; with
D; = {d;1,dip,...,d;} forma(v,~, \) difference family if the differences
dip —diy, (i =1,...¢; z,y = 1,...,v,x # y) give each non-zero element
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of G exactly A times. If the Abelian group i%/,, each translate is a cyclic shift
and the difference family is a cyclic difference family.

Example5.9. The subsetd); = {1,2,5}, Dy = {1,3,9} of Z;3 form a
(13, 3, 1) difference family with differences:

FromD;: 2—1=1, 1-2=12, 5—1=4,
1-5=9, 5-2=3, 2-5=10,
FromDy: 3—1=2, 1-3=11, 9—1=38,
1-9=5 9-3=6, 3-9=T.

Difference families with\ = 1 allow the design of quasi-cyclic codes free
of 4-cycles. To construct a length ratel‘T1 regular quasi-cyclic codél =
[a1(x), a2(x),...,a;(z)] with column weighty, takel of the base blocks of a
(v,~, 1) difference family, and define thgh circulant of H as the transpose of
the circulant formed from thgth base block in the difference family as follows:

a](:r) — xdjal _|_ xdj,Q _|_ P _|_ :L‘djy’Y'

5.3 Bibliographic notes

Tanner founded the topic of algebraic methods for constructing graptis s
able for sum-product decoding in [2]. The length 73 finite geometry camke w
first implemented on an integrated circuit using iterative decoding by Karplus
and Krit [31] and many subsequent authors have considered thé&uwditn

of LDPC codes using designs [32—-36], partial geometries [37] andrgkn
ized quadrangles [38]. Graph-based constructions for codes witti gioth
have been presented by Margulis [39], and extended by Rosenthaioaro-
bel [40] and Lafferty and Rockmore [41]. While other constructiond foPC
codes have been presented which have a mixture of algebraic andnigndo
constructed portions [42]. The monograph by Assmus and Key [4&sgmwn
excellent treatment of the connection between codes and designs. Foomor
designs see [44] and a good source of constructions is [45].
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